
ESP32 Development

Workshop4
Revision 1.0

Copyright © 2023 4D Systems

Content may change at any time. Please refer to the resource centre for latest documentation.

Contents

31. Introduction

32. Development Setup

42.1. ESP32 Arduino Boards

72.2. GFX4dESP32 Library

72.2.1. Install via Library Manager

92.2.2. Install from a ZIP Library

113. Development Roadmap

113.1. Creating a New Project

143.2. Designing a Graphical Interface

143.3. Writing Code

143.3.1. Preliminary Code

163.3.2. Generating Widget Code

213.4. Programming the Display

213.4.1. Set Target Options

233.4.2. System-Wide Target Options

243.4.3. Uploading the Project

254. Legal Notice

254.1. Proprietary Information

254.2. Disclaimer of Warranties & Limitations of Liabilities

4D Systems MANUAL Page 2 of 25

1. Introduction

Workshop4 is a comprehensive software from 4D Systems providing a code and graphics editor for

ESP32-S3 based modules. It can be used to design graphical interfaces for all sorts of applications

using the IDE's various widgets. All application code can also be developed within the Workshop4

IDE, easily coupling it with the your design, so is a one stop shop for development with these

modules.

The Workshop4 IDE utilises the Arduino IDE 2.x CLI to handle the compiling, linking and

downloading of ESP32-S3 based projects, using the ESP32 Arduino Core and associated libraries,

without having to interface with Arduino IDE at all.

2. Development Setup

This section describes how to setup Workshop4 and Arduino IDE for developing applications for 4D

System's ESP32-S3 based display modules.

Both Workshop4 and Arduino IDE 2.x should be installed in your Windows computer.

Workshop4 IDE

Arduino IDE

To install Workshop4, please refer to the Installation section of the Workshop4 User Manual.

You can refer to this Arduino documentation for instructions on how to download and install Arduino

IDE 2.

•

•

Workshop4 is a Windows-only application.

Note

ESP32 Development Introduction

4D Systems MANUAL Page 3 of 25

https://4dsystems.com.au/download/2570/
https://www.arduino.cc/en/software
../#installation
https://docs.arduino.cc/software/ide-v2/tutorials/getting-started/ide-v2-downloading-and-installing

2.1. ESP32 Arduino Boards

After installing both Workshop4 and Arduino IDE 2 on your system, Arduino needs to add the

supported ESP32 boards which includes 4D Systems' ESP32-S3 based displays through its Boards

Manager.

Follow these steps to install ESP32 Arduino compatible boards using Boards Manager.

Start Arduino IDE and open the Preferences Window.1.

ESP32 Development ESP32 Arduino Boards

4D Systems MANUAL Page 4 of 25

Find Additional boards manager URLs and click the button to edit the list.

Add a reference to https://espressif.github.io/arduino-esp32/package_esp32_index.json and save.

2.

3.

ESP32 Development ESP32 Arduino Boards

4D Systems MANUAL Page 5 of 25

Open Boards Manager from Tools > Board menu.

Search and install esp32 by Espressif Systems.

You can refer to the official Espressif documentation for updated boards URL and more details.

4.

5.

ESP32 Development ESP32 Arduino Boards

4D Systems MANUAL Page 6 of 25

https://docs.espressif.com/projects/arduino-esp32/en/latest/installing.html#installing-using-arduino-ide

2.2. GFX4dESP32 Library

Workshop4 development for 4D Systems' ESP32-S3 based displays relies on GFX4dESP32 library. This

library needs to be installed alongside the Arduino IDE.

2.2.1. Install via Library Manager

Install the library using Arduino IDE's Library Manager by following the procedure below:

Open Library Manager by navigating menu: Sketch > Include Library > Manage Libraries1.

ESP32 Development GFX4dESP32 Library

4D Systems MANUAL Page 7 of 25

Search and install GFX4dESP32 by 4D Systems Pty Ltd.

Arduino IDE will prompt to install additional dependencies that are not currently installed.

2.

3.

ESP32 Development GFX4dESP32 Library

4D Systems MANUAL Page 8 of 25

2.2.2. Install from a ZIP Library

Download a ZIP copy of the library from the GitHub repository

Select the Add ZIP Library option from Sketch > Include Library menu.

1.

2.

ESP32 Development GFX4dESP32 Library

4D Systems MANUAL Page 9 of 25

https://github.com/4dsystems/GFX4dESP32

Navigate to the downloaded zip file and click Open.

As of writing this document, this method doesn't prompt to automatically install dependencies.

Therefore, dependencies need to be installed manually. As of the initial version of the library, the only

dependency is SdFat library (GitHub Repository - v2.2.2).

3.

ESP32 Development GFX4dESP32 Library

4D Systems MANUAL Page 10 of 25

https://www.arduino.cc/reference/en/libraries/sdfat/
https://github.com/greiman/SdFat/releases/tag/2.2.2
https://github.com/greiman/SdFat/releases/tag/2.2.2

3. Development Roadmap

After having completed the Development Setup, we can create and develop projects using

Workshop4.

This section discusses about the overall development process including graphics design, writing

code and uploading to the display module.

3.1. Creating a New Project

Create a new project by following the procedure below:

Open Workshop4.1.

ESP32 Development Development Roadmap

4D Systems MANUAL Page 11 of 25

Select New and filter the ESP32 display modules by selecting Arduino Embedded from the

dropdown menu

Find your display module from the list, select the orientation and confirm your selection.

2.

3.

ESP32 Development Creating a New Project

4D Systems MANUAL Page 12 of 25

A fresh project for the selected display will open in a new tab.

As shown, the project starts with an initial code. Please refer to the Preliminary Code section for a

brief discussion.

ESP32 Development Creating a New Project

4D Systems MANUAL Page 13 of 25

3.2. Designing a Graphical Interface

By using Workshop4, it's easier than ever to design graphical user interfaces for ESP32 applications.

It provides an easy-to-use WYSIWYG editor with support for multiple types of widgets including

buttons, sliders, knobs and gauges.

You can refer to the Workshop4 Widgets Reference Manual for more information.

The widgets available for ESP32 devices mainly include GCI widgets and primitive shapes.

Workshop4 provides all the available widgets for ESP32-S3 displays under the Widgets menu.

3.3. Writing Code

Workshop4 utilises Arduino CLI for compiling, linking and downloading of ESP32-S3 based projects.

This lets user develop Arduino code from within Workshop4 IDE while working on a user interface.

3.3.1. Preliminary Code

Workshop4 provides initial code to start with. This includes setup code required for the screen and

touch handling code for touch enabled display modules.

The code starts with including the appropriate header file from the GFX4dESP32 library.

#include "gfx4desp32_%%displaynm%%.h"

gfx4desp32_%%displaynm%% gfx = gfx4desp32_%%displaynm%%();

%%displaynm%% is automatically replaced by Workshop4 with the name of the target display module, making it
easier to change between different 4D Systems ESP32-S3 modules without the need to change this part of
the code.

Note

ESP32 Development Designing a Graphical Interface

4D Systems MANUAL Page 14 of 25

../../pdf/workshop4_widgets_reference_manual_r_1_2.pdf

The setup code includes:

The loop function includes touch handling code for touch enabled display modules:

gfx.begin();
gfx.Cls();
gfx.ScrollEnable(false);
gfx.BacklightOn(true);
gfx.Orientation(%%orientation%%);
gfx.SmoothScrollSpeed(5);
gfx.TextColor(WHITE, BLACK);
gfx.Font(2);
gfx.TextSize(1);
gfx.Open4dGFX("NoName1"); // Opens DAT and GCI files for read using filename without
extension.
gfx.touch_Set(TOUCH_ENABLE); // Global touch enabled

%%orientation%% is automatically replaced by Workshop4 depending on the target display orientation

NoName1 is the default format for the name of an unsaved project file. This is carried over to the GCI/DAT
files that's copied to the uSD card for GCI widgets. It is also automatically replaced when the project is
saved assumming it wasn't edited manually.

gfx.touch_Set(TOUCH_ENABLE); is only generated for touch enabled display modules

Note

•

•

•

int itouched, val;
if (gfx.touch_Update()) {
 itouched = gfx.imageTouched();
 // start touched selection
 switch (itouched) { // **do not alter, remove or duplicate this line**
 // case iKnob1: // case statement for Knobs and Sliders
 // break;
 // end touched selection
 default: // **do not alter, remove or duplicate this line**
 int button = gfx.ImageTouchedAuto(); // use default for keyboards and buttons
 val = gfx.getImageValue(button);
 // start button selection
 switch (button) { // **do not alter, remove or duplicate this line**
 // case one for each button or keyboard, default should end up as -1
 } // end button selection **do not alter, remove or duplicate this line**
 }
}

Please take note of the items are commented with "do not alter, remove or duplicate this line". These lines
are used by Workshop4 to locate various sections of the code, for when the Paste Code option is used.

Warning

ESP32 Development Writing Code

4D Systems MANUAL Page 15 of 25

3.3.2. Generating Widget Code

Workshop4 is primarily designed for products powered by 4D graphics processors: Pixxi44, Pixxi28,

Diablo16, Picaso and Goldelox. It provides multiple environments for developers allowing different

level of expertise, from no coding at all to writing code from scratch.

Workshop4's ViSi environment provides the most versatility by allowing users to write their own code

while providing a graphics editor. Furthermore, it provides a simple utility that generates code for

each widget or object used in the project with a click of a button.

Similar to Workshop4's ViSi environment, ESP32-S3 project provides a Paste Code utility that can be

used to generate relevant code for the widgets.

This option generates code to update or show widgets at the current cursor position, or more

appropriate location or multiple locations in the project.

The following is a list of code snippets Workshop4 generate for a target Workshop4 object.

Show widget initially - This is generated for all widgets in the setup function. This needs to run

at least once when switching forms. The generated code must be edited to only show the

current Form and widgets in it.

Enabling touch - This is generated in the setup function together with showing the touch input

widget once. The generated code must be edited to only enable the input widgets in the current

active Form.

Touch handling - This is generated in switch-case block in the loop function and can be used to

handle which input widget is touched and its new value.

Update widget value - This is generated for output widgets in the current cursor position.

1.

2.

3.

4.

Workshop4 also generates code inside a header file <project name>Const.h based on the widgets added to
the project when the graphics is built. This contains constants that can be seen generated with the Paste
Code option. If there's no generated graphics, this file will not be generated and should be commented out.

Note

ESP32 Development Writing Code

4D Systems MANUAL Page 16 of 25

Here's an example single form project containing a gauge, a slider input and 2 buttons.

From this project, Paste Code option is used for all four widgets while the cursor is in the same

position.

The generated code is as shown:

#include "gfx4desp32_%%displaynm%%.h"

gfx4desp32_%%displaynm%% gfx = gfx4desp32_%%displaynm%%();

#include "PasteCodeConst.h"
// Note. This file will not be created if there are no generated graphics

void setup()
{
 gfx.begin();
 gfx.Cls();
 gfx.ScrollEnable(false);
 gfx.BacklightOn(true);
 gfx.Orientation(%%orientation%%);
 gfx.SmoothScrollSpeed(5);
 gfx.TextColor(WHITE, BLACK); gfx.Font(2); gfx.TextSize(1);
 gfx.Open4dGFX("PasteCode"); // Opens DAT and GCI files for read using
 // filename without extension.
 gfx.touch_Set(TOUCH_ENABLE); // Global touch enabled
 gfx.UserImages(iCoolgauge1,0) ; // init_Coolgauge1 show initially, if required
 gfx.imageTouchEnable(iSlider1, true); // init_Slider1 enable touch of widget (on Form1)
 gfx.UserImages(iSlider1,0) ; // init_Slider1 show initially, if required (on Form1)
 gfx.imageTouchEnable(iWinbutton1, true, MOMENTARY);
 // init_Winbutton1 enable touch of widget (on Form1)
 gfx.UserImages(iWinbutton1,0) ; // init_Winbutton1 show initially,
 // if required (on Form1)
 gfx.imageTouchEnable(iWinbutton2, true, MOMENTARY);
 // init_Winbutton2 enable touch of widget (on Form1)
 gfx.UserImages(iWinbutton2,0) ; // init_Winbutton2 show initially,
 // if required (on Form1)
} // end Setup **do not alter, remove or duplicate this line**

ESP32 Development Writing Code

4D Systems MANUAL Page 17 of 25

Notice that despite the cursor being positioned at the same place for each widget, update code is

only generated for the CoolGauge since it is the only output widget.

void loop()
{
 // cursor position is below this comment during each use of 'Paste Code' option
 gfx.UserImages(iCoolgauge1, frame) ; // where frame is 0 to 100 (for a displayed 0 to 100)

 // cursor position is above this comment during each use of 'Paste Code' option

 int itouched, val ;
 if(gfx.touch_Update())
 {

 itouched = gfx.imageTouched() ;
 switch (itouched)
 { // start touched selection **do not alter, remove or duplicate this line**
 // case iKnob1 : case statement for Knobs and Sliders
 // break ;
 case iSlider1 : // process_Slider1 process (on Form1)
 val = gfx.imageAutoSlider(iSlider1, HORIZONTAL_SLIDER, gfx.touch_GetX(), 8, 8);
 // process Slider based on val
 break ;
 default: // end touched selection **do not alter, remove or duplicate this line**
 int button = gfx.ImageTouchedAuto(); // use default for keyboards and buttons
 val = gfx.getImageValue(button);
 switch (button)
 { // start button selection **do not alter, remove or duplicate this line**
 // case one for each button or keyboard, default should end up as -1
 case iWinbutton1 : // process_Winbutton1 process Button (on Form1)
 // process win button, for toggle val will be 1 for down and 0 for up
 break ;
 case iWinbutton2 : // process_Winbutton2 process Button (on Form1)
 // process win button, for toggle val will be 1 for down and 0 for up
 break ;
 } // end button selection **do not alter, remove or duplicate this line**
 }
 }

}

// cursor position is below this comment during each use of 'Paste Code' option
gfx.UserImages(iCoolgauge1, frame) ; // where frame is 0 to 100 (for a displayed 0 to 100)

// cursor position is above this comment during each use of 'Paste Code' option

Notice that the generated code for CoolGauge includes the variable frame which pertains to the new value to
update the gauge to. This variable is not automatically declared since users may prefer to use their own more
meaningful variable names.

Note

ESP32 Development Writing Code

4D Systems MANUAL Page 18 of 25

In the setup function, you'll find code to draw widgets initially and to enable touch for input widgets.

This should be edited as needed as it is only generated to give a suitable starting point. Common

changes that needs to be done are:

handling multiple forms - not all forms are drawn at the start and therefore this needs to be

edited to suit the project

enabling/disabling touch - some applications may need to initially disable touch for input

widgets and only enable at certain conditions

hiding widgets initially - some applications may need to initially hide widgets and only show at

certain conditions

Users can freely adjust their application code to suit their needs.

gfx.UserImages(iCoolgauge1,0) ; // init_Coolgauge1 show initially, if required
gfx.imageTouchEnable(iSlider1, true); // init_Slider1 enable touch of widget (on Form1)
gfx.UserImages(iSlider1,0) ; // init_Slider1 show initially, if required (on Form1)
gfx.imageTouchEnable(iWinbutton1, true, MOMENTARY);
 // init_Winbutton1 enable touch of widget (on Form1)
gfx.UserImages(iWinbutton1,0) ; // init_Winbutton1 show initially,
 // if required (on Form1)
gfx.imageTouchEnable(iWinbutton2, true, MOMENTARY);
 // init_Winbutton2 enable touch of widget (on Form1)
gfx.UserImages(iWinbutton2,0) ; // init_Winbutton2 show initially,
 // if required (on Form1)

•

•

•

ESP32 Development Writing Code

4D Systems MANUAL Page 19 of 25

In the loop function, code is generated for each input widget inside the touch handling block from

the initial code.

The pasted code allows you to simply handle the new value of each input widget. Comments are

provided to show which part of the code the touch input value can be handled.

Users can freely add code for handling the new value. However, it is always advisable to refrain from

using blocking code as it can affect touch handling.

int itouched, val ;
if (gfx.touch_Update())
{
 itouched = gfx.imageTouched() ;
 switch (itouched)
 { // start touched selection **do not alter, remove or duplicate this line**
 // case iKnob1 : case statement for Knobs and Sliders
 // break ;
 case iSlider1 : // process_Slider1 process (on Form1)
 val = gfx.imageAutoSlider(iSlider1, HORIZONTAL_SLIDER, gfx.touch_GetX(), 8, 8);
 // process Slider based on val
 break ;
 default: // end touched selection **do not alter, remove or duplicate this line**
 int button = gfx.ImageTouchedAuto(); // use default for keyboards and buttons
 val = gfx.getImageValue(button);
 switch (button)
 { // start button selection **do not alter, remove or duplicate this line**
 // case one for each button or keyboard, default should end up as -1
 case iWinbutton1 : // process_Winbutton1 process Button (on Form1)
 // process win button, for toggle val will be 1 for down and 0 for up
 break ;
 case iWinbutton2 : // process_Winbutton2 process Button (on Form1)
 // process win button, for toggle val will be 1 for down and 0 for up
 break ;
 } // end button selection **do not alter, remove or duplicate this line**
 }
}

Please take note of the items are commented with "do not alter, remove or duplicate this line". These lines
are used by Workshop4 to locate various sections of the code, for when the Paste Code option is used.

Warning

ESP32 Development Writing Code

4D Systems MANUAL Page 20 of 25

3.4. Programming the Display

3.4.1. Set Target Options

When working with ESP32-S3 devices, several options such as partition table, USB options, etc. can

be set. In Arduino, these options can be set from Tools menu.

In Workshop4, the same option can be set by going to the Project menu and opening Project

Options window by clicking the button as shown.

ESP32 Development Programming the Display

4D Systems MANUAL Page 21 of 25

From this window, find 4D Systems gen4-ESP32 Modules (ESP32-S3R8N16)

Right click on it to open a dropdown menu.

Select the options as needed by your project and press OK.

ESP32 Development Programming the Display

4D Systems MANUAL Page 22 of 25

3.4.2. System-Wide Target Options

Unlike Arduino IDE, Workshop4 provides both system-wide (IDE-wide) and project options.

Changing the project target options won't affect the system-wide settings.

The system-wide options are used when creating a new project.

To change the system-wide options in Workshop4, go to File -> Options -> Arduino.

ESP32 Development Programming the Display

4D Systems MANUAL Page 23 of 25

3.4.3. Uploading the Project

After setting the target options, the project can be compiled and uploaded.

Connect the display module via the USB-C port or using a 4D-UPA (revision 1.4 or higher) via the 30-

way interface.

Select the target COM port for the display module.

From the Home menu, click Comp'nLoad to compile and load the program to the display.

ESP32 Development Programming the Display

4D Systems MANUAL Page 24 of 25

4. Legal Notice

4.1. Proprietary Information

The information contained in this document is the property of 4D Systems Pty. Ltd. and may be the

subject of patents pending or granted, and must not be copied or disclosed without prior written

permission. 4D Systems endeavours to ensure that the information in this document is correct and

fairly stated but does not accept liability for any error or omission. The development of 4D Systems

products and services is continuous and published information may not be up to date. It is

important to check the current position with 4D Systems. 4D Systems reserves the right to modify,

update or makes changes to Specifications or written material without prior notice at any time.

All trademarks belong to their respective owners and are recognised and acknowledged.

4.2. Disclaimer of Warranties & Limitations of Liabilities

4D Systems makes no warranty, either expressed or implied with respect to any product, and

specifically disclaims all other warranties, including, without limitation, warranties for

merchantability, non-infringement and fitness for any particular purpose.

Information contained in this publication regarding device applications and the like is provided only

for your convenience and may be superseded by updates. It is your responsibility to ensure that your

application meets with your specifications.

Images and graphics used throughout this document are for illustrative purposes only. All images

and graphics used are possible to be displayed on the 4D Systems range of products, however the

quality may vary.

In no event shall 4D Systems be liable to the buyer or to any third party for any indirect, incidental,

special, consequential, punitive or exemplary damages (including without limitation lost profits, lost

savings, or loss of business opportunity) arising out of or relating to any product or service provided

or to be provided by 4D Systems, or the use or inability to use the same, even if 4D Systems has been

advised of the possibility of such damages.

4D Systems products are not fault tolerant nor designed, manufactured or intended for use or resale

as on line control equipment in hazardous environments requiring fail - safe performance, such as in

the operation of nuclear facilities, aircraft navigation or communication systems, air traffic control,

direct life support machines or weapons systems in which the failure of the product could lead

directly to death, personal injury or severe physical or environmental damage ('High Risk Activities').

4D Systems and its suppliers specifically disclaim any expressed or implied warranty of fitness for

High Risk Activities.

Use of 4D Systems' products and devices in 'High Risk Activities' and in any other application is

entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless 4D Systems

from any and all damages, claims, suits, or expenses resulting from such use. No licenses are

conveyed, implicitly or otherwise, under any 4D Systems intellectual property rights.

ESP32 Development Legal Notice

4D Systems MANUAL Page 25 of 25

	Introduction
	Development Setup
	ESP32 Arduino Boards
	GFX4dESP32 Library
	Install via Library Manager
	Install from a ZIP Library

	Development Roadmap
	Creating a New Project
	Designing a Graphical Interface
	Writing Code
	Preliminary Code
	Generating Widget Code

	Programming the Display
	Set Target Options
	System-Wide Target Options
	Uploading the Project

	Legal Notice
	Proprietary Information
	Disclaimer of Warranties & Limitations of Liabilities

