@4 D SYSTEMS

Designer or ViSi I12C Connection
to Wii Nunchuk

DOCUMENT DATE: 15t May 2019
DOCUMENT REVISION: 11

>
o
o
-
O
>
-
O
P
Z
O
—)
m
7

WWW.4DSYSTEMS.COM.AU

APPLICATION NOTES 4D-AN-00051
Description Content
This Application note is intended to demonstrating to the user the set-up, =TT o o] 4o o 1 2
initialization and operation of the built-in 12C communications port of the PICASO Content 2
display modules. This application is intended for use in the 4D Workshop 4 — o .
Designer environment. The tools needed includes the following; ApPlication OVErVIEW........ceveeeeiiieieccrieiecerreencerereneesernneeesesansssennnssnenes 3
=TT o3 o o Yot =T [o TN 3
Before getting started, the following are required: Create @ NEW PrOJECEcceecrueereeeereeriseeceeesseeeseeesseesssessasesssesssessssessssesssenes 3
Design the ProjECt.....cccieecieeiiieeiteiiteniirienerenerennerenseerascesnsesenssssnsessnsens 4
e Any of the following 4D Picaso display modules:
The Include SECHIONeeeeevivrvvreeeeciiiiriiirriisssisirrtnnrssasssssnsenennns 4
uLCD-24PTU uLCD-32PTU uLCD-43(P/PT/PCT) The main PrOgramceeecoveccccesescossscscossescossacscsssassosssescsssasssssasscsssasse 4
uLCD-28PTU uLCD-32WPTU UVGA-IIl The Display SCreen SELUP...........ee..eeeeeeeeerreeeeeerreeneesseeneessennsessennnsens 4
. . The repeat-forever detect I00pceeeeeeeereeeecerreeeneerreeneereennnaens 4
and other superseded modules which support the Designer
and/or Visi environments. THE SUD-TOULINEScceeveeeeeeeiiiiriiirreneiiiiiirinnnriiisssssirnsnnsssasssssssssnnnnns 5
Communication initialization sub-routine - Init() 5
e 4D Programming Cable or uUSB-PA5 The request for data sub-routine - request() 7
e Workshop 4 IDE (installed according to the installation The receive data sub-routine — receive() 7
document) o)
) o] Editing the analogue and accelerometer data —edit() 8
e When downloading an application note, a list of recommended
application notes is shown. It is assumed that the user has read The IF conditional I00PS.............ceeeeeeeeeeeeeeeeeeneerrreneesseeeeessennsessennnsens 9
or has a working knowledge of the topics presented in these Drawing a colour filled circle using the analogue data 9

© 2014 4D Systems

recommended application notes.

Drawing a colour filled circle using the accelerometer x/y data 9

When no buttons and both buttons are pressed 9
RUNNIng the Programc.ceiiieiiieiiiiiiicinicinieecreeessnnesenessensssesesenns 10
Proprietary INnformationcoceeuuiiiieeiiiiiicccrcrcc e e e e e eeas 12
Page 2 of 12 www.4dsystems.com.au

http://www.4dsystems.com.au/product/1/7/4D_Intelligent_Display_Modules/uLCD_24PTU/
http://www.4dsystems.com.au/product/1/9/4D_Intelligent_Display_Modules/uLCD_32PTU/
http://www.4dsystems.com.au/product/1/11/4D_Intelligent_Display_Modules/uLCD_43/
http://www.4dsystems.com.au/product/1/8/4D_Intelligent_Display_Modules/uLCD_28PTU/
http://www.4dsystems.com.au/product/1/10/4D_Intelligent_Display_Modules/uLCD_32WPTU/
http://www.4dsystems.com.au/product/1/124/4D_Intelligent_Display_Modules/uVGA_III/
http://www.4dsystems.com.au/product/17/114/Accessories/4D-Programming-Cable/
http://www.4dsystems.com.au/product/17/115/Accessories/uUSB-PA5/
http://www.4dsystems.com.au/product/10/120/Development/4D_Workshop_4_IDE/

APPLICATION NOTES

4D-AN-00051

Disclaimer of Warranties & Limitation of Liability........cccccccevrvvnnncrrrnnnneens 12

Application Overview

This Application note is intended to demonstrating to the user the set-up,
initialization and operation of the built-in 12C communications port of the PICASO
Embedded Graphics Processor. For this project a Wii Nunchuk was utilized as a
slave device. Data output that contains the slave device’s analogue output and
accelerometer output were read using 12C connection.

This application note also intends to explain the functionality and working of 12C,

as well as some sample code that explains how 12C is implemented. Remember that
the PICASO Inter-Integrated Circuit can only function as a master device.

© 2014 4D Systems

Page 3 of 12

Setup Procedure

For instructions on how to launch Workshop 4, how to open a Designer
project, and how to change the target display, kindly refer to the section
“Setup Procedure” of the application note

Designer Getting Started - First Project

For instructions on how to launch Workshop 4, how to open a ViSi project,
and how to change the target display, kindly refer to the section “Setup
Procedure” of the application note

ViSi Getting Started - First Project for Picaso and Diablo16

Create a New Project

For instructions on how to create a new Designer project, please refer to
the section “Create a New Project” of the application note

Designer Getting Started - First Project

For instructions on how to create a new ViSi project, please refer to the
section “Create a New Project” of the application note

ViSi Getting Started - First Project for Picaso and Diablo16

www.4dsystems.com.au

http://www.4dsystems.com.au/appnote/4D-AN-00117/
http://www.4dsystems.com.au/appnote/4D-AN-00119/
http://www.4dsystems.com.au/appnote/4D-AN-00117/
http://www.4dsystems.com.au/appnote/4D-AN-00119/

APPLICATION NOTES

4D-AN-00051

Design the Project

This will be presented in a sectional manner so as not to create confusion with the
project. For an in-depth detail of the functions used in this application note please
refer to the PICASO Internal Functions Reference Manual and 4D Graphics

Language Programmer’s Reference Manual.

The Include Section

This project starts with the identification of the platform being used as declared by
the #platform function. Also a colour related include file is added using the # inherit
statement. It is followed by the declaration of constants and global variable which

will be used in this application.

The main program

The main program for this projects contains two sections: the initialization of the
screen and the repeat-forever loop that shall be continuously run by the processor.
In the sample program, several sub-routines are called in to perform a particular
function. These functions include initialization of the 12C communication of the
PICASO to the Wii Nunchuk 12C port, the reception of data sub-routine and an
additional sub-routine to convert the data received to fit a certain segment of the
screen for demonstration purposes. Details on the sub-routines will be presented
in the succeeding sections of this document.

© 2014 4D Systems

Page 4 of 12

The Display Screen Setup

Aside from the assisted manner of setting up the screen mode of the display
module, one of the PICASO internal function is also capable of doing so. The
gfx_ScreenMode() function can set the screen to either a landscape or a portrait
orientation or their reversed orientation.

As part of the presentation in this application two other functions are added before

the repeat-forever loop. The gfx_Cls() statement is used to clear the screen and
subsequently, the delay of 100 milliseconds is inserted using the function pause().

The repeat-forever detect loop

The next segment of the program is the repeat-forever loop. This loop generally
contains all the routines that would be run by the processor endlessly. For this
program, the repeat-forever repeatedly calls on several sub-routines that were
executed. Sub-routines related to 12C slave device initialization, the data
acquisition from the slave device, and conditional loops are contained in the repeat

forever.

www.4dsystems.com.au

http://www.4dsystems.com.au/product/PICASO/
http://www.4dsystems.com.au/product/4D_Workshop_4_IDE/downloads
http://www.4dsystems.com.au/product/4D_Workshop_4_IDE/downloads

APPLICATION NOTES

4D-AN-00051

wk Data™):

YELLOW) ;

, YELLOW) :

This group of statements presents the repeat-forever segment of the application
program. A brief explanation of the statements included shall be presented in the
next sections.

© 2014 4D Systems

Page 5 of 12

The sub-routines

A good practice in avoiding confusion and reducing the codes placed under the
main program is to use sub-routines. These sub-routines can be called upon directly
and executed.

Referring to the statements above, we would notice that four sub-routines are

called in succession. Each time a sub-routine is called in the processor executes the
statements included therein. Sub-routines can be written to return particular
global variable values.

Communication initialization sub-routine - Init()

Establishing communications over the [2C port requires several important
information. These information includes the initialization procedure required by
the slave device.

Initializing the PICASO I2C port to work with a slave device would need the slave

address ID, register addresses and the data that is needed to be written to the slave
device’s register address.

www.4dsystems.com.au

APPLICATION NOTES

4D-AN-00051

Looking at the statements above, the initialization start with opening the 12C port
to a particular speed. The available speed speeds of transfer for the 12C are 100
KHz, 400 KHz and 1MHz. The PICASO embedded graphics processor can only
operate as an I2C master. Hence, all other device which will connect to the 12C must
be configured to be slave devices.

The statements displayed above means that the first step to perform is opening
the 12C port using a particular communication speed and then initiate a ‘start’
condition. After the initiation of the start condition, send to the slave device its
write address. The slave write address is Oxa4 while the read address is OxA5 in
hexadecimal.

Wii Nunchuk 12C device address
1 |0 |1 |0 |0 (1 |0 |Read : 1
Write: 0

© 2014 4D Systems

Page 6 of 12

Sending a ‘write device address’ to the slave would result to a hexadecimal value
equivalent to OxA4 and subsequently, a ‘read device’ will be equal to 0xA5. Slave
devices have their own register addresses that are inherent to themselves. These
registers, when written with a particular data shall perform a particular task. From
the statements pasted on the previous column, we can see that for the initialization
of the Wii Nunchuk a couple of hexadecimal are needed to complete the
handshaking process. Data are written in right after the register address is
identified. Referring to the statements on the left column the register OxFO is
written with the 0x55 data, likewise the OxFB register is written with the 0x00.
Figuratively, we can use the flow chart below to summarize the handshake
initiation for the PICASO and the Wii Nunchuk.

¢ Specify communication speed

eSend a start communication to the slave device

Y

e Use the 'Write' bit located on the LSB of the device slave

LU address.

device

o Write to OxFO register address
register

N *Write to slave device 0x55 data
data

) *Write to OxFB register address
register

¢ Write to slave device 0x00 data

e |nitiate halt condition

S
S
-

www.4dsystems.com.au

APPLICATION NOTES

4D-AN-00051

Handshaking of master and slave device is the most important amongst 12C
communication setup procedure. Without fulfilling this requirement the
transferring of data to and from the slave device will not be possible.

The request for data sub-routine - request()

After setting up the master-slave I12C handshake between the devices the next step
is to send the request for the internal preparation of data within the Wii Nunchuk.
The slave device awaits a request byte to be written following a device ‘write’
address byte. The statements below shows this request procedure. The slave
device write address, as given from the previous section of this document, is OxA5.
After writing this to the slave, it is followed by a 0x00 byte. This byte directs the
slave device to prepare the output data of the accelerometer, analogue output and

the button status.

*Send a start communication to the slave

Again, putting this into a flow diagram
device

) will result to the following. Note that

this sub-routine is primarily used to tell
the Wii Nunchuk

e Use the 'Write' bit located on the LSB of
identify the device slave address.
device J

¢ Write conversion request byte to slave
device 0x00 data

write data

3
e |nitiate halt condition
J

© 2014 4D Systems

Page 7 of 12

The receive data sub-routine - receive()

Next sub-routine to understand is the receive routine. This section simply sends
out the slave device address, with the read bit high, to the slave device. The slave
read request is a bit set at the LSB of the slave address. Reading the information
from the slave device requires that the LSB of the slave address will be set to a high
bit to represent — ‘reading mode of the slave address’.

Wii Nunchuk 12C device address
1 \o \1 \o \o \1 \o |Read:1

Hence, the resulting byte to be written over the 12C would be OxA5. Below are the
statements contained in the receive() sub-routine. Note that that the constant

device has a value of (0xA4);

Before a 6-byte data is sent from the slave device to the master, an
acknowledgment from the Wii Nunchuk is needed. The 12C_AckStatus() function is
used to receive the acknowledgment from the slave device. Following receipt of
the acknowledgment from the slave device a succession of data receive and
acknowledgment is done by the master device, in this case the PICASO.

www.4dsystems.com.au

APPLICATION NOTES

4D-AN-00051

The flow diagram is the process in which the 6-bytes from the Wii Nunchuk is

received by the PICASO.

~
*Send a start communication to the slave device
J
)
e Use the 'Read' bit located on the LSB of the device slave address.
address

e wait for the read acknowledgment from slave device

wait slave
ack J

ethe master device will read the data sent by the slave address and
receive reply with an acknowledgment every after byte received. This receive
and acknowledge is done six times to read all data.

J

B
einitiate a halt condition

J

The data received by the PICASO needs to be arranged at this point. The
statements at the end of this sub-routine re-arranges the receive data to

show the real data for the analogue, accelerometer and the buttons.

Data byte receive

Joystick X

Joystick Y

Accelerometer X (bit 9 to bit 2 for 10-bit resolution)

Accelerometer Y (bit 9 to bit 2 for 10-bit resolution)

Accelerometer Z (bit 9 to bit 2 for 10-bit resolution)

Accel. Z | Accel. Z | Accel. Y | Accel. Y | Accel. X | Accel. X

bit 1 bit 0 bit 1 bit 0 bit 1 bito | C-button | Z-button

© 2014 4D systems

Byte Ox00 : X-axis data of the joystick
Byte Ox01 : Y-axis data of the joystick

Byte 0x02 : X-axis data of the accellerometer sensor
Byte 0x03: Y-axis data of the accellerometer sensor
Byte 0x04: Z-axis data of the accellerometer sensor

Byte Ox05 1 bit 0 asZ button status - 0 = pressed and 1 = release
bit 1 as C button status - 0 = pressed and 1 = relecse
bit 2 and 3 as 2 lower bit of X-axis data of the accellerometer sensor
bit 4 and 5 as 2 lower bit of Y-axis data of the accellerometer sensor

bit 6 and 7 as 2 lower bit of Z-axis data of the accellerometer sensor

The end result of the receive() sub-routine returns the real values to the _data
buffer array.

Editing the analogue and accelerometer data -edit()

This subroutine is intended to format the received accelerometer data to fit the
dimensions of the display module used in this application project. This sub-routine
was written to provide a better visual presentation of the accelerometer data.

Address
0x00 Here, the _data index 2 and 3 are shifted to the right by a single bit and then
0x01 subtracted from a value of 400. The resulting value of this subroutine replaces the
0x02 real value in the same index positions of _data array.
0x03
0x04
0x05

Page 8 of 12 www.4dsystems.com.au

APPLICATION NOTES

4D-AN-00051

The IF conditional loops

Being able to communicate with the slave device Wii Nunchuk, simple IF-condition
loops that displays the output value are included in this application. This IF-
conditional loop are made in reference with the buttons pressed. The Wii Nunchuk
has two buttons available. Using these buttons, a total of four states can be made.

Drawing a colour filled circle using the analogue data

The analogue data described from the previous sections of this document is used
to provide a centre point for a colour filled circle. This conditional loop is dependent
on the C button of the Wii Nunchuk. Referring to the program statements below,
we could see that whenever the button pressed is pressed and results to a 0x01
value in _datal5].

, YELLOW) :

» YELLOW)

With the value of _data[5] being able to comply with the condition then the
drawing of the horizontal and vertical lines together with the other statements
inside the conditional loop are executed.

Drawing a colour filled circle using the accelerometer x/y data

Likewise the accelerometer x and y, is used to draw a colour filled circle. The centre
point of the circles denotes the current position of the Wii Nunchuk. Again, the
values used herein are for presentation purposes. Referring to the statements on
the next column, we can see horizontal and vertical line drawn to the screen

© 2014 4D Systems

Page 9 of 12

display. The numerical data is also displayed on the side. All these statements are
executed only if the Z button is pressed.

if(

A press on the Z button will result to a value equal to 0x02. If the condition is

fulfilled, then the statements include therein are executed.

When no buttons and both buttons are pressed

In the event that there are no buttons pressed, this will result to a value equal to
0x03. This is the result of the received data over 12C. When this condition is fulfilled,
the drawing of horizontal and vertical lines are continually executed.

www.4dsystems.com.au

APPLICATION NOTES

4D-AN-00051

The set of conditions included in this conditional loop clears the screen using the

gfx_Cls() function. The screen is cleared only if a result of value in _data[5] is equal
to the 0x00. This is the event that both of the C and Z buttons are pressed.

Running the Program

Making the program work is fairly simple. Download the program into the display
module and connect the slave device to the master. The images shows the correct
connection of the 12C to the display device. Note that the SCLs and SDAs must be
coupled together for both devices.

Wiring Connections of Wii Nunchuk to PICASO

Using the Wii Nunchuk terminal adapter, seen in the images here, the connection
to the Wii Nunchuk can be easily connected to the PICASO display module. A set of
header pins and jumper wire will be very useful for temporary connections.

For the succeeding parts of this section, a simplified wiring connection discussion
will be presented. Also, included in the next sections are the axial reference for the
Wii Nunchuk and connection pin-outs.

Analog Stick

Below is the terminal pin-out for the WII
Nunchuk.

Clock GND

/ T v Data

Z Button

.,) “—— Connector

C Butten

© 2014 4D Systems

Above is the complete display and Wii Nunchuk project. Notice that the interface
between the two devices is quite simple. There are simply four connections needed
in this application project, namely: SCL, SDA, VCC, and GND. Below we can see how
the Wii Nunchuk port is connected to the adapter.

Wii PICASO (30 Wire colour
Adapter way header)
+ 3.3 volts Blue
- GND Green
SDA PIN 3 Violet
SDC PIN 2 Grey

Following the pin match-up table for the Wii Adapter and the PICASO 30 way
header pins connections, the connections must be similar to the one below.

Page 10 of 12

www.4dsystems.com.au

APPLICATION NOTES 4D-AN-00051

Wii Nunchuk Data

JOYSTICK X :: 135
1 139
287

176
642
|

Here are some photos that show the result of the project. When the Below is the axial reference for the Wii Nunchuk.

analogue signal from the joystick is used, we need to press the C button to
activate the drawing of circles.

JOYSTICK X @
JOYSTICK ¥ :

ACCELERD Z :
BUTTON C/2Z :

Likewise, pressing the Z button enables drawing of the circle using the

accelerometer as reference for the X and Y value.

© 2014 4D Systems Page 11 of 12 www.4dsystems.com.au

APPLICATION NOTES 4D-AN-00051

Proprietary Information

The information contained in this document is the property of 4D Systems Pty. Ltd. and may be the subject of patents pending or granted, and must not be
copied or disclosed without prior written permission.

4D Systems endeavours to ensure that the information in this document is correct and fairly stated but does not accept liability for any error or omission. The
development of 4D Systems products and services is continuous and published information may not be up to date. It is important to check the current position
with 4D Systems.

All trademarks belong to their respective owners and are recognised and acknowledged.

Disclaimer of Warranties & Limitation of Liability

4D Systems makes no warranty, either expresses or implied with respect to any product, and specifically disclaims all other warranties, including, without
limitation, warranties for merchantability, non-infringement and fitness for any particular purpose.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates.
It is your responsibility to ensure that your application meets with your specifications.

In no event shall 4D Systems be liable to the buyer or to any third party for any indirect, incidental, special, consequential, punitive or exemplary damages
(including without limitation lost profits, lost savings, or loss of business opportunity) arising out of or relating to any product or service provided or to be
provided by 4D Systems, or the use or inability to use the same, even if 4D Systems has been advised of the possibility of such damages.

4D Systems products are not fault tolerant nor designed, manufactured or intended for use or resale as on line control equipment in hazardous environments
requiring fail — safe performance, such as in the operation of nuclear facilities, aircraft navigation or communication systems, air traffic control, direct life
support machines or weapons systems in which the failure of the product could lead directly to death, personal injury or severe physical or environmental
damage (‘High Risk Activities’). 4D Systems and its suppliers specifically disclaim any expressed or implied warranty of fitness for High Risk Activities.

Use of 4D Systems’ products and devices in 'High Risk Activities' and in any other application is entirely at the buyer’s risk, and the buyer agrees to defend,
indemnify and hold harmless 4D Systems from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or
otherwise, under any 4D Systems intellectual property rights.

Page 12 of 12 www.4dsystems.com.au

