@4 D SYSTEMS

Designer or ViSi String Class Functions

DOCUMENT DATE: 7th May 2020
DOCUMENT REVISION: 11

>
U
U
C
O
>
-
O
Z
Z
O
—)
m
wn

WWW.4DSYSTEMS.COM.AU

APPLICATION NOTES 4D-AN-00056

Description Content
This Application Note is dedicated to providing the reader a simple and DESCHPLION .ot 2
straight forward documentation about String Functions. The 4DGL code of CONEENL cvecveteceecteeeesasaesaesasssesssessessessessesses s sassassessassesbessessessesarsssansans 2
the Designer project can be copied and pasted to an empty Visi project and ApPlication OVErVIEW........ciiieeeiiiiiiniiiiiniiiiinieiiieeiinesiieaseessseees 3
it will compile normally. The code can also be integrated to that of an
— i . L= {1 oI o oTot =T [T o RN 3
existing ViSi project.
Create a NeW Projectciceiiieeiiienniiieiiieiiieiiinesciensiensienesssassssssessnssss 3
Before getting started, the following are required: Introduction to SEriNG FUNCLIONSeeeeeeeerriiierrineeereeereiesssssenseeeersresessenns 4
* Any of the following 4D Picaso display modules: Getting Acquainted with the 4DGL String FUNCHONSc..o....... 4
Description of the String Class FUNCHIONS.............ccvviiiiiieeninieinns 4
uLCD-24PTU uLCD-32PTU uLCD-43(P/PT/PCT) . .
uLCD-28PTU uLCD-32WPTU UVGA-III DeSigN the Project......ccuuciiieeeiiiiiecereeeccsreneeesreneneseenanessenasessnenansssnennnes 5
NUMDEIS <. 5
and other superseded modules which support the Designer and/or WOTAS OF BYEE ..ot ee et en et eanneen e, 6
ViSi environments. Characters 6
APPENAING OFf STHNQS ...vvvvviiiiiiiiiiiiiiiiiiiiiiiieieeiiebebeeeebeeeeeeeeeeeeeeeane 7
e The target module can also be a Diablo16 display .
PULING Of BYIES ..uiiiiiii e e e aaeees 7
uLCD-35DT uLCD-70DT Run the Program ... 8
Proprietary Informationccceeiiiiieiiiiiieiiiiiicnrcc e nenenas 9
Visit. www.4dsystems.com.au/products to see the latest display Disclaimer of Warranties & Limitation of Liabilityccc.cccceeuuirreeannnnnnn.... 9
module products that use the Diablo16 processor.
e 4D Programming Cable or uUSB-PAS
e micro-SD (uSD) memory card
Workshop 4 IDE (installed according to the installation document)

Page 2 of 9 www.4dsystems.com.au

http://www.4dsystems.com.au/product/1/7/4D_Intelligent_Display_Modules/uLCD_24PTU/
http://www.4dsystems.com.au/product/1/9/4D_Intelligent_Display_Modules/uLCD_32PTU/
http://www.4dsystems.com.au/product/1/11/4D_Intelligent_Display_Modules/uLCD_43/
http://www.4dsystems.com.au/product/1/8/4D_Intelligent_Display_Modules/uLCD_28PTU/
http://www.4dsystems.com.au/product/1/10/4D_Intelligent_Display_Modules/uLCD_32WPTU/
http://www.4dsystems.com.au/product/1/124/4D_Intelligent_Display_Modules/uVGA_III/
http://www.4dsystems.com.au/product/uLCD_35DT/
http://www.4dsystems.com.au/product/uLCD_70DT/
http://www.4dsystems.com.au/products
http://www.4dsystems.com.au/product/17/114/Accessories/4D-Programming-Cable/
http://www.4dsystems.com.au/product/17/115/Accessories/uUSB-PA5/
http://www.4dsystems.com.au/product/uSD_2GB/
http://www.4dsystems.com.au/product/10/120/Development/4D_Workshop_4_IDE/

APPLICATION NOTES

4D-AN-00056

Application Overview

This application note is intended to letting the reader understand the
fundamental usage of the 4DGL String Functions through simple and straight
forward exemplification. In addition, this application note also gives the
reader the basic usage of these functions alongside loops and condition
routines.

The underlying architecture of the Picaso and Diablo16 processors is 16-bits,
this extends to the addresses used to access memory. This means that for
strings, normal addresses and pointers cannot be used as strings need to be
addressed in 8 bit increments.

String pointers and normal (word) pointers are not interchangeable. Normal
(word) pointers can be converted to string pointers, using the str_Ptr()
function. String pointers cannot be converted to word pointers.

Functions that use string pointers begin with str_ (with the sole exception
of str_ptr), also filenames in file_ functions expect string pointers, but since
one normally uses constants for this, you don’t see str_Ptr() used much in
those functions.

Setup Procedure

For instructions on how to launch Workshop 4, how to open a Designer
project, and how to change the target display, kindly refer to the section
“Setup Procedure” of the application note

Designer Getting Started - First Project

For instructions on how to launch Workshop 4, how to open a ViSi project,
and how to change the target display, kindly refer to the section “Setup
Procedure” of the application note

ViSi Getting Started - First Project for Picaso and Diablo16

Create a New Project

For instructions on how to create a new Designer project, please refer to

the section “Create a New Project” of the application note
Designer Getting Started - First Project

For instructions on how to create a new ViSi project, please refer to the
section “Create a New Project” of the application note
ViSi Getting Started - First Project for Picaso and Diablo16

Page 3 of 9

www.4dsystems.com.au

http://www.4dsystems.com.au/appnote/4D-AN-00117/
http://www.4dsystems.com.au/appnote/4D-AN-00119/
http://www.4dsystems.com.au/appnote/4D-AN-00117/
http://www.4dsystems.com.au/appnote/4D-AN-00119/

APPLICATION NOTES

4D-AN-00056

Introduction to String Functions

Getting Acquainted with the 4DGL String Functions

String Class Functions

Summary of Functions in this section:
e str_Ptr(&var)
e str_GetD(&ptr, &var)
e str_GetW(&ptr, &var)
e str_GetHexW(&ptr, &var)
e str_GetC(&ptr, &var)
e str_GetByte(ptr)
e str_GetWord(ptr)
e str_PutByte(ptr, val)
e str_PutWord(ptr, val)
e str_Match(&ptr, *str)
e str_Matchl(&ptr, *str)
e str_Find(&ptr, *str)
e str_Findl(&ptr, *str)
e str_Length(ptr)
e str_Printf(&ptr, *format)
e str_Cat(&destination, &Source)
e str_CatN(&ptr, str, count)
e str_ByteMove(src, dest, count)
e str_Copy(dest, src)
e str_CopyN(dest, src, count)

Description of the String Class Functions

str_Ptr(&var);
Return a byte pointer to a word region.

str_GetD(&ptr, &var);
Convert number in a string to DWORD and put result in var

str_GetW(&ptr, &var);
Convert number in a string to WORD and put result in var.

str_GetHexW(&ptr, &var);
Convert hex number in a string to WORD and put result in var

str_GetC(&ptr, &var);
Get next valid ASCII char in a string to a variable var.

str_GetByte(ptr);
Get a byte from a string in a pointer ptr

str_PutByte(ptr, value);
Put a byte value into a string buffer at ptr

str_PutWord(ptr, value);
Put a word value into a byte buffer at ptr

str_Match(&ptr, *str);

Compares the string at position ptr in a string buffer to the string str, skipping
over any leading spaces if required. If a match occurs, ptr is advanced to the first
position past the match, else ptr is not altered. (**case sensitive matching)

str_Find(&ptr, *str);

Searches for string str in string buffer pointed to by ptr. (** case sensitive

matching)

str_Length(ptr);
Returns the length of a string excluding terminator.

Page 4 of 9

www.4dsystems.com.au

APPLICATION NOTES 4D-AN-00056
This function prints a formatted string from elements derived from a structured byte DeSIgn the PrOjeCt

region. There is only one input argument, the byte region pointer ptr which is
automatically advanced as the format specifier string is processed.
Format specifiers:

%c character %s string of characters
%d signed decimal %u unsigned decimal
%lu long unsigned decimal ~ %x hex byte

%X hex word %IX hex long

%b binary word %]Ib long binary word

str_Cat(&destination, &source);
Appends a copy of the source string to the destination string.

str_CatN(&ptr, str, count);
The number of characters copied is limited by "count".

str_ByteMove(src, dest, count);
Copy bytes from "src" to "dest", stopping only when "count” is exhausted.

str_Copy(dest, src);
Copy a string from "src" to "dest", stopping only when the end of source string "src" is
encountered (0x00 terminator).

str_CopyN(dest, src, count);
Copy a string from "src" to "dest", stopping only when "count” is exhausted, or end of
source string "str" is encountered (0x00 string terminator).

Numbers

// CONVERT NUMBERS IN A STRING TO WORD AND DISPLAY RESULT
var buffer[50]; // 100 character buffer for a source string

var vars[3]; // variable array for results
var p; // string pointer
var n;

func main()
gfx_ScreenMode(PORTRAIT);
txt_MoveCursor(3,0);

print(“CONVERT NUMBER IN A STRING TO WORD AND DISPLAY RESULT");

to(buffer); print("0x7834 0b11011001 12345 datum"); //stream data from print
//function to variable array
//buffer

// raise string pointer for the

//string functions

p := str_Ptr(buffer);

while(str_GetW(&p, &vars[n++]) != 0); //convert all numerical value from string
//pointer p into a word and save to vars until
// non-numerical is detected

txt_MoveCursor(6,12);

print(vars[0],"\n", vars[1],"\n", vars[2],"\n"); // display all numerical value from

// result of numerical detection

//values are in decimal format

// numbers extracted, now just print

// remainder of string

str_Printf (&p, "%s\n");

txt_MoveCursor(12,13);
str_Printf(&p,"\nRemainder\n%s"); //display remainder of
// string in pointer p
repeat

forever

endfunc

Page 5 of 9

www.4dsystems.com.au

APPLICATION NOTES

4D-AN-00056

Words or Byte

// INSERTING AND GETTING OF WORDS FROM A STRING

var p;
numbers[10];
var numbers[10];

func main()

p:= str_Ptr(numbers);
str_PutWord (p + 1, 10);

str_PutWord (p + 3, 400);

print(str_GetWord(p + 1), "\n");
print(str_GetWord(p + 3), "\n");

repeat
forever

endfunc

// string pointer variable

// array for 20 characters

// raise a string pointer

// put a word value of 100 in string
// pointer p @ the 2nd byte

// put a word value of 100 in string
// pointer p @ the 3rd byte

// 'peek’ the array for the byte @
//2 and 3 and display after

Characters
// READING OF CHARACTERS FROM A STRING

var p; // string pointer

var n;

var char;

var buffer[100]; // 200 character buffer for a source string

func main()

to(buffer); print("4D SYSTEMS");
p := str_Ptr(buffer); // raise a string pointer p for
//strings in array buffer
while(str_GetC(&p, &char))

print("\np=",p," char is ", [CHR] char); //use the print characters

wend
print("\nEnd of string");

repeat
forever

endfunc

Page 6 of 9 www.4dsystems.com.au

APPLICATION NOTES

4D-AN-00056

Appending of Strings
// SAMPLE PROGRAM TO DEMONSTATE SIMPLE APPENDING OF STRING

var buffer1[100], buffer2[100];
var p,q;

func main()
txt_MoveCursor(0,1);
print("PROGRAM FOR APPENDING STRING");
to(bufferl); print(" 4D SYSTEMS");
txt_MoveCursor(3,0);
q:=str_Ptr(buffer1);
print("VALUE OF BUFFER1:");
txt_MoveCursor(5,5);
str_Printf(" ", buffer1);

// save string to bufferl

// assign q as pointer

to (buffer2); print(" TECHNOLOGY");
txt_MoveCursor(7,0);

print("VALUE OF BUFFER2:");

p := str_Ptr (buffer2);
txt_MoveCursor(9,5);

str_Printf(" ", buffer2);

//save string to buffer2

//assign p as pointer

txt_MoveCursor(20,0);

print("APPEND BUFFER1 W/ BUFFER2 ");
str_Copy(q +10, p); // copy buf2 to buf1.

// Position to 11th of buf2
str_Printf(&q, "\n\n%s"); // print all characters in pointer q
repeat

forever

endfunc

Putting of Bytes
// PUTTING CHARACTERS/BYTES IN STRING POINTER

func main()

var buffer[100]; // 200 character buffer for a source string
varn, p;

p:= str_Ptr(buffer); //assign p as pointer to buffer
str_PutByte(p++, 'S"); // put char S in position zero of buffer
str_PutByte(p++, 'Y"); // offset placement of Y in p by 1
str_PutByte(p++,'S'); // offset placement of Y in p by 2
str_PutByte(p++, 'T'); // offset placement of Y in p by 3
str_PutByte(p++, 'E'); // offset placement of Y in p by 4
str_PutByte(p++, 'M'); // offset placement of Y in p by 5
str_PutByte(p++, 0); // terminate string with 0
txt_MoveCursor(3, 5);

print([STR] buffer); //display string content of buffer

repeat
forever
endfunc

Page 7 of 9

www.4dsystems.com.au

APPLICATION NOTES

4D-AN-00056

Run the Program

For instructions on how to save a Designer project, how to connect the
target display to the PC, how to select the program destination, and how to
compile and download a program, please refer to the section “Run the
Program” of the application note

Designer Getting Started - First Project

For instructions on how to save a ViSi project, how to connect the target
display to the PC, how to select the program destination, and how to
compile and download a program, please refer to the section “Run the
Program” of the application note

ViSi Getting Started - First Project for Picaso and Diablo16

The uLCD-32PTU and uLCD-35DT display modules are commonly used as
examples, but the procedure is the same for other displays.

Page 8 of 9

www.4dsystems.com.au

http://www.4dsystems.com.au/appnote/4D-AN-00117/
http://www.4dsystems.com.au/appnote/4D-AN-00119/

APPLICATION NOTES 4D-AN-00056

Proprietary Information

The information contained in this document is the property of 4D Systems Pty. Ltd. and may be the subject of patents pending or granted, and must not be
copied or disclosed without prior written permission.

4D Systems endeavours to ensure that the information in this document is correct and fairly stated but does not accept liability for any error or omission. The
development of 4D Systems products and services is continuous and published information may not be up to date. It is important to check the current position
with 4D Systems.

All trademarks belong to their respective owners and are recognised and acknowledged.

Disclaimer of Warranties & Limitation of Liability

4D Systems makes no warranty, either expresses or implied with respect to any product, and specifically disclaims all other warranties, including, without
limitation, warranties for merchantability, non-infringement and fitness for any particular purpose.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates.
It is your responsibility to ensure that your application meets with your specifications.

In no event shall 4D Systems be liable to the buyer or to any third party for any indirect, incidental, special, consequential, punitive or exemplary damages
(including without limitation lost profits, lost savings, or loss of business opportunity) arising out of or relating to any product or service provided or to be
provided by 4D Systems, or the use or inability to use the same, even if 4D Systems has been advised of the possibility of such damages.

4D Systems products are not fault tolerant nor designed, manufactured or intended for use or resale as on line control equipment in hazardous environments
requiring fail — safe performance, such as in the operation of nuclear facilities, aircraft navigation or communication systems, air traffic control, direct life
support machines or weapons systems in which the failure of the product could lead directly to death, personal injury or severe physical or environmental
damage (‘High Risk Activities’). 4D Systems and its suppliers specifically disclaim any expressed or implied warranty of fitness for High Risk Activities.

Use of 4D Systems’ products and devices in 'High Risk Activities' and in any other application is entirely at the buyer’s risk, and the buyer agrees to defend,
indemnify and hold harmless 4D Systems from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or
otherwise, under any 4D Systems intellectual property rights.

Page 9 of 9 www.4dsystems.com.au

	Description
	Content
	Application Overview
	Setup Procedure
	Create a New Project
	Introduction to String Functions
	Getting Acquainted with the 4DGL String Functions
	Description of the String Class Functions

	Design the Project
	Numbers
	Words or Byte
	Characters
	Appending of Strings
	Putting of Bytes

	Run the Program
	Proprietary Information
	Disclaimer of Warranties & Limitation of Liability

