@4 D SYSTEMS

Designer or ViSi How to Draw
Triangles and Polygons

DOCUMENT DATE: 13t April 2019
DOCUMENT REVISION: 11

>
U
U
r
O
>
-
O
Z
Z
O
—)
T
7

WWW.4DSYSTEMS.COM.AU

APPLICATION NOTES

4D-AN-00060

This application note shows how to program a 4D display module in the
Designer environment to make it draw triangles and polygons on the screen.
The 4DGL code of the Designer project can be copied and pasted to an
empty ViSi project and it will compile normally. The code can also be
integrated to that of an existing ViSi project.

Before getting started, the following are required:

e Any Picaso, Diablol6, or Goldelox display module. Visit
www.4dsystems.com.au to see the latest products using any of

these graphics processors.
e 4D Programming Cable / pUSB-PAS5/uUSB-PA5-II
for non-gen4 displays (uLCD-xxx)
e 4D Programming Cable & gen4-IB / gen4-PA / 4D-UPA,
for gen-4 displays (gen4-uLCD-xxx)

e micro-SD (uSD) memory card

e Workshop 4 IDE (installed according to the installation

document)

e When downloading an application note, a list of recommended
application notes is shown. It is assumed that the user has read
or has a working knowledge of the topics presented in these
recommended application notes.

Note: The attached Designer project and the discussions in this application
note make use of a uLCD-32PTU, which is a 320-pixel-by-240-pixel display.
Goldelox displays, however, are usually smaller. The uOLED-96-G2, for
instance, is a 96-pixel-by-64-pixel display. For Goldelox display users, the
discussions are still relevant and there should be no difficulty in editing the
simple project.

Page 2 of 13

www.4dsystems.com.au

http://www.4dsystems.com.au/
https://www.4dsystems.com.au/product/4D_Programming_Cable/
https://www.4dsystems.com.au/product/uUSB_PA5/
https://www.4dsystems.com.au/product/4D_Programming_Cable/
https://www.4dsystems.com.au/productpages/gen4-IB/downloads/gen4-IB_datasheet_R_1_2.pdf
https://www.4dsystems.com.au/product/gen4_PA/
https://www.4dsystems.com.au/product/4D_UPA/
https://www.4dsystems.com.au/product/uSD_4GB_Industrial/
https://www.4dsystems.com.au/product/4D_Workshop_4_IDE/

APPLICATION NOTES

4D-AN-00060

Description
Content
Application Overview
Setup Procedure
Create a New Project
Design the Project
Display Resolution and Coordinate System
Start Drawing
Draw a Triangle
gfx_Triangle(x1, y1, x2, y2, x3,y3, colour)
gfx_TriangleFilled(x1, y1, x2, y2, x3,y3, colour)
Clear the Screen
Using the For/Next Loop
Animation
Arrays
Draw a Polygon
gfx_Polygon(n, vx, vy, colour)
gfx_PolygonFilled(n, vx , vy, colour)
More Functions
Run the Program

Proprietary Information

W o N N o o o »n un & & & W N

N N
~ O

11
11
12
12
13

Disclaimer of Warranties & Limitation of Liability

13

Page 3 of 13

www.4dsystems.com.au

APPLICATION NOTES

4D-AN-00060

Application Overview

The Designer environment enables the user to write 4DGL code in its natural
form to program the display module. 4DGL is a graphics oriented language
allowing rapid application development, and the syntax structure was
designed using elements of popular languages such as C, Basic, Pascal and
others. Programmers familiar with these languages will feel right at home
with 4DGL.

The purpose of this application note is, besides showing the user how to
draw triangles and polygons, to introduce the basics of 4DGL through
examples.

Setup Procedure

For instructions on how to launch Workshop 4, how to open a Designer
project, and how to change the target display, kindly refer to the section
“Setup Procedure” of the application note

Designer Getting Started - First Project

For instructions on how to launch Workshop 4, how to open a ViSi project,
and how to change the target display, kindly refer to the section “Setup
Procedure” of the application note

ViSi Getting Started - First Project for Picaso and Diablo16

Create a New Project

For instructions on how to create a new Designer project, please refer to
the section “Create a New Project” of the application note
Designer Getting Started - First Project

For instructions on how to create a new ViSi project, please refer to the
section “Create a New Project” of the application note
ViSi Getting Started - First Project for Goldelox

or

ViSi Getting Started - First Project for Picaso and Diablo16

Page 4 of 13

www.4dsystems.com.au

http://www.4dsystems.com.au/appnote/4D-AN-00117/
http://www.4dsystems.com.au/appnote/4D-AN-00119/
http://www.4dsystems.com.au/appnote/4D-AN-00117/
http://www.4dsystems.com.au/appnote/4D-AN-00118/
http://www.4dsystems.com.au/appnote/4D-AN-00119/

APPLICATION NOTES

4D-AN-00060

Design the Project

Display Resolution and Coordinate System

Before starting to draw, it is necessary to know how positions of points on
the display screen are determined. 4D Systems offers display screens of
various resolutions and sizes. When the user opens a new project, the
Choose Your Product window shows the screen resolutions and sizes of
different display modules.

For the uLCD-32PTU screen:

PLCD-32PTU 240x320
3.2" QVGA Intelligent Touch Screen LCD Module

For all modules, positions of points are determined starting from the origin,
which is always located at the left-top corner. The location of this reference
point is common to all orientations — the portrait, landscape, portrait
rotated, and landscape rotated. Two most commonly used orientations are
portrait and landscape.

Landscape orientation:

origin(0,0)

height = 240

width = 320 point(320,240)

Page 5 of 13

www.4dsystems.com.au

APPLICATION NOTES 4D-AN-00060

Portrait orientation: '_ kplatform "uLCD-32DT"
it "4DGL lebitColours.fnc”
origin(0,0) -
unc main()
height =320
point(240,320) .
Draw a Triangle
idth = 240
Wi gfx_Triangle(x1, y1, x2, y2, x3,y3, colour)

This function draws a triangle outline between vertices pointl(x1, y1),
Observe the similarity of the above to the Cartesian coordinate system. The point2(x2, y2), and point3(x3, y3) using the specified colour.
y axis points downward only here, however. This system applies to all display Example:

modules and all orientations.

-I gfx Triangle (. . N N N » GREEHN) ;

The screen (uLCD-32PTU, portrait orientation in this example) will look like

Start Drawing

The user is advised to use the Designer program skeleton provided by
Workshop as a starting code. Just place additional codes before line 11. If
repetitive operation is desired, the programmer can also insert additional

as shown below.

codes between lines 11 and 12 instead.

Page 6 of 13 www.4dsystems.com.au

APPLICATION NOTES

4D-AN-00060

=

point2(100, 10)

point1(10, 10)

point3(60, 60)

gfx_TriangleFilled(x1, y1, x2, y2, x3,y3, colour)
This function draws a solid triangle outline between vertices point1(x1, y1),
point2(x2, y2), and point3(x3, y3) using the specified colour.

Example:

The screen (uLCD-32PTU, portrait orientation in this example) will look like
as shown below.

point3(10, 100) point2(150, 100)

point1(200, 200)

Clear the Screen

Often times it is necessary to clear the screen to remove unwanted graphics,
create a flashing effect, or do animation. Clear the screen using the function
gfx_Cls(). To illustrate:

YELLCW) ;

Page 7 of 13 www.4dsystems.com.au

APPLICATION NOTES

4D-AN-00060

The code above repetitively draws a yellow triangle and a red triangle.

Yellow triangle

Red triangle

Note that in the code a new function is introduced — pause(time). This
function adds a time delay, the unit of which is in milliseconds. Adding a
delay is necessary for the observer to see the triangles since instructions are
executed so fast. Try, for example, removing line 19 of the code.

Using the For/Next Loop

Using loops is one way to shorten a code. Again, a loop is a part of a program
used to perform repetitive operations. For example, the programmer can
use a for/next loop to draw multiple triangles. To illustrate:

. ORAMNGE) ;

The figure above shows a code for drawing triangles from top to bottom of
the screen. The figure below shows the result.

A line-by-line discussion of the code now follows. Lines previously discussed
are bypassed.

In line 32, y is declared as a variable.

Page 8 of 13

www.4dsystems.com.au

APPLICATION NOTES

4D-AN-00060

Values of variables, as opposed to constants, may change during the course
of program execution. Here the incrementing value of y is used in drawing
the triangles. Also, the programmer must declare a variable first before
using it. To learn more about variables in 4DGL, consult the 4DGL
Programmers Reference Manual.

The statements from lines 34 to 38 make up the for/next loop.

, OBRLNGE) ;

The instructions inside the loop are executed repetitively while a certain
condition is true. Below is the syntax or format for declaring a for/next loop.

for (variable initialisation; condition; variable update)
[statements to execute]
next

Applying the syntax above, we analyse line 34.

The statement y := 0 is the variable initialisation. Here the variable y is
initialised to its value at the start of the loop (zero). The variable y is used
for controlling the loop and drawing the triangles.

The statement y <= 220 is the condition. The statements inside the for loop
are executed over and over again as long as the value of the variable y is less
than or equal to 220.

The statement y := y + 50 is the variable update. This sets the amount by
which the variable is changed each time through the loop. Here the value of

y is increased by 50 after each iteration or cycle of the loop.

The line below now draws an orange triangle.

, ORBNGE) ;

Note that for each vertex, the y coordinate uses the variable y. Further
analysis will show that as the loop iterates, a series of triangles are drawn
from top to bottom, with a vertical spacing of 50 pixels.

There other kinds of loops besides the for loop. These are discussed in the
4DGL Programmers Reference Manual.

Line 36 adds a delay so that the observer can see the triangle. Line 37 is a
comment and is ignored by the compiler.

Line 38 terminates the for/next loop.

Animation
To make the triangle appear to move from top to bottom of the screen,
uncomment (remove the double forward slash symbol) the statement in line

Page 9 of 13

www.4dsystems.com.au

http://www.4dsystems.com.au/product/4D_Workshop_4_IDE/downloads
http://www.4dsystems.com.au/product/4D_Workshop_4_IDE/downloads
http://www.4dsystems.com.au/product/4D_Workshop_4_IDE/downloads

APPLICATION NOTES

4D-AN-00060

37. Compile and download the program. The user can also try creating a
triangle with a changing size and colour.

Arrays

It is necessary that the user has an understanding of the concept of arrays
prior to drawing polygons. An array can be thought of as a variable
containing many values. In the previous section the user was introduced to
the use of variables. Variables are simply names used to refer to some
location in memory — a location that holds a value. In the for loop code
presented in the previous section, the variable y has a value that changes as
the loop repeats.

It is also possible for the user to store many values under a variable by
making it an array. For example, to create an array y that contains five values
or that has five elements, declare it first as:

Here the symbol n inside the brackets is called the index. Note that declaring

an array (line 8) is different from assigning values to array elements (line 14).
The programmer cannot assign values to elements of an array without
having declared it first. In other words, the array must be declared before

its elements are initialised. It is also possible to declare an array and initialise
its elements in a single line, as will be shown later. Now to assign values to
each element:

Note that there are a total of five elements and that the index starts at zero

and ends at four. To print the value of the third element:

To print the value of the fifth element:

Observe that the first index number, which corresponds to the first element,

is zero. The last index number is the number of elements minus one. A five-
element array, therefore, has the index numbers 0 to 4.

To declare an array and initialise its elements in a single line:

Page 10 of 13

www.4dsystems.com.au

APPLICATION NOTES 4D-AN-00060

Draw a Polygon

gfx_Polygon(n, vx, vy, colour)

This function plots lines between points specified by a pair of arrays using
the specified colour. The last point is drawn back to the first point,
completing the polygon.

Example:

gfx_PolygonFilled(n, vx, vy, colour)
This function draws a solid polygon by plotting lines between points
specified by a pair of arrays and using the specified colour. The last point is
drawn back to the first point, completing the polygon. Replace the
command in line 54 of the code with

H |I gfzx Polygor 1 . v, vy, CRANGE) :

The screen (ULCD-32PTU, portrait orientation in this example) will look like
as shown below.

Page 11 of 13 www.4dsystems.com.au

APPLICATION NOTES

4D-AN-00060

The screen (uLCD-32PTU, portrait orientation in this example) will look like
as shown below.

F.-.-

More Functions

There are other functions for drawing graphics and for setting colours and
patterns. Learning how to use these functions is relatively easy after having
been acquainted with how points are addressed in 4D display screens and
how triangles and polygons are drawn. Users who want to experiment with
these functions may refer to section 2.6 Graphics Functions of any of the
following documents:

Goldelox Internal Functions Manual

Picaso Internal Functions Manual

Diablo16 Internal Functions Manual

Run the Program

For instructions on how to save a Designer project, how to connect the
target display to the PC, how to select the program destination, and how to
compile and download a program, please refer to the section “Run the
Program” of the application note

Designer Getting Started - First Project

For instructions on how to save a ViSi project, how to connect the target
display to the PC, how to select the program destination, and how to
compile and download a program, please refer to the section “Run the
Program” of the application note

ViSi Getting Started - First Project for Goldelox

or

ViSi Getting Started - First Project for Picaso and Diablo16

The uLCD-32PTU, uLCD-35DT, uOLED-96-G2, and/or uOLED-160-G2 display
modules are commonly used as examples, but the procedure is the same for
other displays.

Page 12 of 13

www.4dsystems.com.au

http://www.4dsystems.com.au/product/GOLDELOX/downloads
http://www.4dsystems.com.au/product/PICASO/downloads
http://www.4dsystems.com.au/product/DIABLO16/downloads
http://www.4dsystems.com.au/appnote/4D-AN-00117/
http://www.4dsystems.com.au/appnote/4D-AN-00118/
http://www.4dsystems.com.au/appnote/4D-AN-00119/

APPLICATION NOTES 4D-AN-00060

Proprietary Information

The information contained in this document is the property of 4D Systems Pty. Ltd. and may be the subject of patents pending or granted, and must not be

copied or disclosed without prior written permission.

4D Systems endeavours to ensure that the information in this document is correct and fairly stated but does not accept liability for any error or omission. The
development of 4D Systems products and services is continuous and published information may not be up to date. It is important to check the current position
with 4D Systems.

All trademarks belong to their respective owners and are recognised and acknowledged.

Disclaimer of Warranties & Limitation of Liability

4D Systems makes no warranty, either expresses or implied with respect to any product, and specifically disclaims all other warranties, including, without
limitation, warranties for merchantability, non-infringement and fitness for any particular purpose.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates.
It is your responsibility to ensure that your application meets with your specifications.

In no event shall 4D Systems be liable to the buyer or to any third party for any indirect, incidental, special, consequential, punitive or exemplary damages
(including without limitation lost profits, lost savings, or loss of business opportunity) arising out of or relating to any product or service provided or to be
provided by 4D Systems, or the use or inability to use the same, even if 4D Systems has been advised of the possibility of such damages.

4D Systems products are not fault tolerant nor designed, manufactured or intended for use or resale as on line control equipment in hazardous environments
requiring fail — safe performance, such as in the operation of nuclear facilities, aircraft navigation or communication systems, air traffic control, direct life
support machines or weapons systems in which the failure of the product could lead directly to death, personal injury or severe physical or environmental
damage (‘High Risk Activities’). 4D Systems and its suppliers specifically disclaim any expressed or implied warranty of fitness for High Risk Activities.

Use of 4D Systems’ products and devices in 'High Risk Activities' and in any other application is entirely at the buyer’s risk, and the buyer agrees to defend,
indemnify and hold harmless 4D Systems from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or
otherwise, under any 4D Systems intellectual property rights.

Page 13 of 13 www.4dsystems.com.au

