@4 D SYSTEMS

ViSi Pin Counter and Pulse Out

DOCUMENT DATE: 13t April 2019
DOCUMENT REVISION: 11

>
o
o
r
@
>
-
O
Z
Z
O
—)
rm
7

WWW.4DSYSTEMS.COM.AU

APPLICATION NOTES

4D-AN-00065

This Application note is intended to demonstrating to the user the set-up,
initialization and operation of the built-in pin counter and pulse output feature of
the Diablo16 display module.

e The target screen can be any of the following Diablo16 touch
display modules:

gen4-ulLCD-24D gen4-ulLCD-28D gen4-ulLCD-32D
gen4-ulLCD-35D gen4-ulLCD-43D gen4-ulLCD-50D
gen4-uLCD-70D
Series
uLCD-35DT uLCD-43D Series uLCD-70DT

Visit www.4dsystems.com.au/products to see the latest display

module products that use the Diablo16 processor.

e 4D Programming Cable / pUSB-PA5/uUSB-PA5-II
for non-gen4 displays (uLCD-xxx)

e 4D Programming Cable & gen4-IB / gen4-PA / 4D-UPA,
for gen-4 displays (gen4-uLCD-xxx)

e micro-SD (uSD) memory card

e Workshop 4 IDE (installed according to the installation document)

When downloading an application note, a list of recommended
application notes is shown. It is assumed that the user has read or
has a working knowledge of the topics presented in these
recommended application notes.

Page 2 of 13

www.4dsystems.com.au

https://www.4dsystems.com.au/product/gen4_uLCD_24D/
https://www.4dsystems.com.au/product/gen4_uLCD_24D/
https://www.4dsystems.com.au/product/gen4_uLCD_28D/
https://www.4dsystems.com.au/product/gen4_uLCD_28D/
https://www.4dsystems.com.au/product/gen4_uLCD_32D/
https://www.4dsystems.com.au/product/gen4_uLCD_32D/
https://www.4dsystems.com.au/product/gen4_uLCD_35D/
https://www.4dsystems.com.au/product/gen4_uLCD_35D/
https://www.4dsystems.com.au/product/gen4_uLCD_43D/
https://www.4dsystems.com.au/product/gen4_uLCD_43D/
https://www.4dsystems.com.au/product/gen4_uLCD_50D/
https://www.4dsystems.com.au/product/gen4_uLCD_50D/
https://www.4dsystems.com.au/product/gen4_uLCD_70D/
https://www.4dsystems.com.au/product/gen4_uLCD_70D/
https://www.4dsystems.com.au/product/uLCD_35DT/
https://www.4dsystems.com.au/product/uLCD_43D/
https://www.4dsystems.com.au/product/uLCD_70DT/
http://www.4dsystems.com.au/products
https://www.4dsystems.com.au/product/4D_Programming_Cable/
https://www.4dsystems.com.au/product/uUSB_PA5/
https://www.4dsystems.com.au/product/4D_Programming_Cable/
https://www.4dsystems.com.au/productpages/gen4-IB/downloads/gen4-IB_datasheet_R_1_2.pdf
https://www.4dsystems.com.au/product/gen4_PA/
https://www.4dsystems.com.au/product/4D_UPA/
https://www.4dsystems.com.au/product/uSD_4GB_Industrial/
https://www.4dsystems.com.au/product/4D_Workshop_4_IDE/

APPLICATION NOTES

4D-AN-00065

Description
Content
Application Overview
The DIABLO16 Embedded Graphics Processor
Setup Procedure
Create a New Project
Design the Project
The ViSi - based application project
The Include Section
The main program
The micro-SD initialization
The initial image display and image touch setup segment
The GPIO setup sub-routine
The repeat-forever image touch detect loop
The moveSliderl() sub-routine
The count() sub-routine
The pin counter detect condition
The pulse_out() sub-routine
Running the project
Proprietary Information

Disclaimer of Warranties & Limitation of Liability

©W 0 0 W N & o o o uu A b W W W N

= =R R R R
w W = Oo© O

This document is focused on the fundamental usage of the built-in pin counter and
pin output pulse feature of the DIABLO16 Embedded Graphics Processor. A pulse
is a simple transition from a logic O to a logic 1 or vice versa. The DIABLO16 pin
counter feature enables detection of the transition in either ways. Diablo16 OGM
and Diablo16 display module has a total of 6 pin counter channels. These pin

counters are supported in 6 particular GPIO terminals.

Also included in this application is the pulse out feature of the DIABLO16 embedded
graphics processor. The pulse out is a square wave signal generator that can has a
variable duty cycle. The DIABLO16 has a straight forward function to generate this
pulse which can be used to momentarily turn on and off an isolated output. The
pulse out feature of the DIABLO16 is a ‘one-shot’ square-wave signal.

The DIABLO16 Embedded Graphics Processor

Page 3 of 13 www.4dsystems.com.au

http://www.4dsystems.com.au/product/1/133/4D_Intelligent_Display_Modules/DIABLO16-OGM/
http://www.4dsystems.com.au/product/1/132/4D_Intelligent_Display_Modules/uLCD_70DT/

APPLICATION NOTES

4D-AN-00065

Driving the display and peripherals is the DIABLO16 embedded graphics processor,

a very capable and powerful chip which enables stand-alone functionality,
programmed using the 4D Systems Workshop 4 IDE Software. The Workshop IDE
enables graphic solutions to be constructed rapidly and with ease due to its design
being solely for 4D’s graphics processors.

The DIABLO16 Processor offers considerable FLASH and RAM upgrades over the
PICASO processor, and also provides map-able functions such as 12C, SPI, Serial,

PWM, Pulse Out, and Quadrature Input, to various GPIO, and also provide up to 4
Analogue Input channels.

Setup Procedure

For instructions on how to launch Workshop 4, how to open a ViSi project,
and how to change the target display, kindly refer to the section “Setup
Procedure” of the application note

ViSi Getting Started - First Project for Picaso and Diablo16

Create a New Project

For instructions on how to create a new ViSi project, please refer to the

section “Create a New Project” of the application note

ViSi Getting Started - First Project for Picaso and Diablo16

Page 4 of 13

www.4dsystems.com.au

http://www.4dsystems.com.au/product/DIABLO16/
http://www.4dsystems.com.au/product/DIABLO16/
http://www.4dsystems.com.au/appnote/4D-AN-00119/
http://www.4dsystems.com.au/appnote/4D-AN-00119/

APPLICATION NOTES

4D-AN-00065

Design the Project

To create a simple program that will be able activate and initialize the DIABLO16
pulse input and pulse output, we will need to use some commands enlisted in the
DIABLO 4DGL Internal Functions.

The DIABLO16 embedded graphics processor has a total of 6 and 10 configurable
GPIO for the pin counter and pin pulse out feature, respectively. Referring to the
chart below, we will see that these output pins can be used alternately with other
processor 1/O function support.

These general purpose I/O pins for the PWM output does not follow any
arrangements. The pins may be used readily, after configuring the function setup,
according to the user’s needs. These 1/0 pins are located similar to the image.

DIABLO16 Alternate Pin Configurations

1/O Support Functions

PWM Out
Pin Counter

ANANANANNANENANRANEN Pulse Out

ANENENENENEN
ANENENENENEN

SINISISISISSS SIS SIS | S | S ECEIERELTE

The DIABLO16 configurable I/O are a group of 3.3 volts TTL level terminals but these
are tolerant to a maximum of 5 volts. Anything greater than or less than the
specified operating voltage may prohibit proper communication or even damage
the embedded graphics processor.

15x2 HEADER

H1
- 1 ——Fe The 2x15 male header pin
3 4
A A .
— soe — assignment of the DIABLO16
U i PA14 .
198 i PATS o wso 70DT. The previous table on
F‘ 314 (6v MAX)
AUDIO_IO H i i i
= — 15 16 ——oEm pin function configuration
PA9 15 20 | RESET 3.3V OUT .
PAS 9 W T omamax oOption are lumped together
PA7 3 24— RO : -
EAS 2 % [— o with several other specific
%7 28 e PAL3
A% 27 28 PALS ;
i — purpose pins.
IDC HDR 2x15

Page 5 of 13

www.4dsystems.com.au

http://www.4dsystems.com.au/product/DIABLO16/

APPLICATION NOTES

4D-AN-00065

The ViSi - based application project

For this application project a slider and three LED digits will be needed. Add objects
by navigating to the Layout the objects similar to the one below.

THIS SIMPLE PROJECT APPLICATION USES A FREQUENCY GENERATOR @ 10Hz TO PROVIDE
THE PULSE SIGNAL ON GPIO4. A SIMPLE 555/556 TIMER CAN BE USED TO GENERATE PULSES
TO TRIGGER THE PIN COUNTER.

JQrulse Jetected

PPllilsSeE' s Pulse Puraiion

MiLliseConDs

After all the objects have been laid-out, let’s continue with the other half which
involves the coding of the project. This will be presented in a sectional manner so
as not to create confusion with the project. For an in-depth detail of the functions
used in this application note please refer to the DIABLO16 Internal Functions

Reference Manual.

The Include Section

This project starts with the identification of the platform being used as declared by
the #platform function. For the program to be able to function properly files are
included herein using the #inherit function.

#platform "ulLCD-78DT"
#inherit "4DGL_16bitColours.fnc”
#inherit "VisualConst.inc™

#inherit "pulseConst.inc”
#inherit "leddigitsdisplay.inc”

In this application note, pulseConst.inc, contains all the information about the
objects that are used in the project. Meanwhile, the leddigitsdisplay.inc contains
the function for the proper operation of the led digits objects.

The main program

The main program for this project contains several sections: the mounting of the
micro-SD card, the initial displaying and image touch setup for objects, the repeat-
forever loops which contains the pulse counter detection condition and touch
conditions. Also, the main program calls out sub-routine functions that perform a
particular function.

The micro-SD initialization

Let’s start with the initialization of the uSD card. The uSD card contains all the image
information about the objects used in the project. The object information and data
are saved under a *.DAT and a *.GCl filename extension which is copied to the uSD
during project compilation. Mounting of the disk in this application note was done
using the following set of program statements.

Page 6 of 13

www.4dsystems.com.au

http://www.4dsystems.com.au/product/DIABLO16/downloads
http://www.4dsystems.com.au/product/DIABLO16/downloads

APPLICATION NOTES

4D-AN-00065

hndl := file LoadIm:

("pulse.dat”, “puls

When starting a new project in the ViSi environment these set of statements are
already included in the coding area. The last part of this set of statements uses a
function file_LoadlmageControl() to call on the object data/information files on the
uSD drive. This initializes the data to be called in using the variable ‘hndl’.

Having been able to load and initialize the uSD drive, the processor is now able to
access the information stored therein. As mentioned from the previous section, the
filenames with an extension of DAT and GCl has the image data and information.

Therefore, the next part of the main program is to
Object I o
display all the objects that were placed on the S
. . Form | Formi

Workshop IDE form viewer. To do so, a special button
. . Object | Slider1
from the Object Inspector can help reduce the time of

. . . Properties Paste Code I
coding of this part. The ‘Paste Code” simply pastes

object code into the coding area.

The initial image display and image touch setup segment

In this part of the program, the img_Show() function calls out the object image
and information found in the microSD drive. This set of statements displays every
object that were included in the application project. The displaying of the images

is directly done using the img_Show() function.

The statements in this segment of the program displays all the images and slider.
We have displayed all the slider and LED digit images that were used to provide the
value for the width of the modulated pulse. Moving to the next part of the main
program, this segment is all related to the image touch detection setup.

(hndl, i5liderl, It
ord(hndl, iSlider2, IMAGE FLAGS,

ord(hndl, iSliderl, IM
ord(hndl, islider2, IMAGE_FLAGS)

') & ~I_TOUCH DISABLE);
& ~I_TOUCH_DISABLE);

touch_Set(TOUCH_ENABLE);

This statements uses the img_SetWord() function. The primary objective of this set
of statement is to enable the touch detection for the slider image. The slider images
on this project serves as input objects which utilizes the touch feature of the device.
At the end, of this segment we would notice that the touch feature of the device
was enabled using the touch_Set(TOUCH_ENABLE) statement.

Page 7 of 13

www.4dsystems.com.au

APPLICATION NOTES

4D-AN-00065

The GPIO setup sub-routine

The purpose of this sub-routine is to simplify the presentation of the program
statements in this document. When using the GPIO pins for a special function, it is
always best that the direction of data is assigned.

touch_Set (TOUCH_ENABLE);

gpio_setup();

repeat

Below is the sub-routine being called in by the gpio_setup() function. It can be
observed that the GPIO PA4 is being set as an input pin while the PAS is set as
output. The pins are assigned respectively using the pin_Set() function. The
pokeW() function at the end of this routine is used to trigger the pin counter of PA4
to count single transitions as denoted by the OxFFFF to 0x0000 rollover transition.

The repeat-forever image touch detect loop

At this end part of the main program, the routine was to detect any activity on the
touch screen. Please refer to the image on the next page. Three touch states were
included in the repetitive routine: the detection for a pressed state, a released
state, and a moving state. Prior to the touch detection, a variable ‘n’ is assigned to
store temporary image touch detection result. The img_Touched() function checks
the object being touched and return the name of the object enlisted in the variable
‘hndl’. Deploy

Moving to the touch detection routines, when a touch status of ‘pressed’ is

detected the value of the coordinates are saved on the variables x and y.

The most significant segment of this routine is the moving touch state, it is in this
conditional loop that the image touch detection is made use. If a touch was
detected over the slider image, a sub-routine or a function is called upon and

executed by the processor.

Let us take the above statement as an example. From the start of the repeat-
forever loop, the img_Touched() function saves the result of an image touch to a
variable ‘n’, this is then checked in the touch moving conditional statements. If it
proves to be equal to one of the conditions then the sub-routine will be executed.
For this statement a moveSliderl() sub-routine is being called and executed.
Referring to the image following this section, we -can see that if the touched image

is equivalent to one of the if-conditions then a particular sub-routine is called in.

The moveSliderl() sub-routine

Whenever the touch detection results to the sliderl image being touched, the
processor is directed to run the statements contained in the sub-routine.

Page 8 of 13

www.4dsystems.com.au

APPLICATION NOTES

4D-AN-00065

The first part of the sub-routine includes the slider codes that are automatically
generated using the ‘Paste Code’ tab on the object inspector window. This is also
true with the LED digits objects. The paste code function is a very good tool to
minimize the coding of the objects.

From the previous set of statements the resulting mathematical value of the slider
position is stored in the variable ‘posn’. In turn, this value is displayed using the
Leddigits4 object. The frame index value is pointed by any change in the value of
‘posn’.

duration :
durat

At the end of the subroutine, a processed value is returned. The returned value is
used as the time-base for the pulse out square wave signal width. The result of the
change in the returned value will be seen in the succeeding sections of this
documentation.

The count() sub-routine

Whenever the result of the image touch results to the sliderl being pressed or
moved the processor is directed to execute the count() subroutine. This sub-
routine contains the ‘Paste Code’ generated statements for the sliderl and Led
digits to display.

ndl, ileddigi

The resulting value is saved on the local variable ‘posn’. This value is again used in
the Led digits statement to point the frame index and display the current value.

Page 9 of 13

www.4dsystems.com.au

APPLICATION NOTES

4D-AN-00065

Notice at the end of the count() sub-routine that a value pulse is returned. This
value will be used to point to the pin counter limit. Whenever the pin count reaches
this value then the pulse out will be triggered.

The use of the values provided by the count() and the moveSlider() subroutines will
be shown in the succeeding section of this document.

The pin counter detect condition

The detection of the transition for the pulse input to the GPIO pin PA5 can be set
to follow a rising edge or a falling or both.

while(pin_Read(PA4))

pin_Counter(PA: L COUNT_RISE, output_pulse);

pokeW (PIN_COUNTER_PA4, - pulses) ;

wend

For this application, the input pulse detection set was set for a low logic to high
logic transition using the argument COUNT _RISE. Referring to the statements
shown above, the while(pin_read()) detects the status of the GPIO PA4. Any
transition detected will execute the statements enclosed in the while-wend
condition loop.

pin_Counter(PA4, COUNT_RISE, output_pulse);
pokeW (PIN_COUNTER_PA4, - pulses)

The pin_Counter() function directs the processor to assign the PA4 GPIO to detect

all rising edge transitions up to the number of pulses set using the pokeW() function
from the setup_gpio() during the initial run.

150 || poke(PIN_COUNTER_PA4,

The pokeW() function is used to write values to the PIN_REGISTER_PA4 a value
between OxFFFF and 0x0000. The number of pulses subtracted from the OxFFFF

gives the number for the counter before rolling over to zero. The
PIN_COUNTER_PAX register needs to be re-armed each time after the pin counter
rolls over to zero. Each time a transition is detected on the GPIO the counter is
increased moving to the value OxFFFF.

The pulse_out() sub-routine

Each time that a logic transition is detected on the PA4, the output_pulse() sub-
routine is called and executed. Each time this routine is called the pulse detected
counter LED digits is increased.

From the previous sections of this documents, recall that the slider-related sub-
routines return a value each time there are changes in the slider values. These
values which are returned using the global variables are utilized in the
output_pulse() sub-routine. The ‘duration’ give the width of the square wave pulse
signal generated on GPIO PAGS. Likewise, the limit of the pulse detection is limited
to the value given by the count() sub-routine.

func o

endfunc

Page 10 of 13

www.4dsystems.com.au

APPLICATION NOTES

4D-AN-00065

Running the project

Compile and download the program to the display module. Having been able to
complete this step, the next step that needs to be done is to provide the pulsating
input on the GPIO PAA4. Inputs to this pin are limited to an approximate value of
1Khz.

For the sole purpose of demonstration, a digital arbitrary waveform generator is
used to provide the logic transitions. Furthermore, to clearly visualize the output
of the GPIO PA5 —that is the pulse output, an oscilloscope will be used to view this
waveform.

THIS SIMPLE PROJECT APPLICATION USES A FREQUENCY GENERATOR @ 10Hz TO PROVIDE
THE PULSE SIGNAL ON GPIO4. A SIMPLE 555/556 TIMER CAN BE USED TO GENERATE PULSES
TO TRIGGER THE PIN COUNTER.

Pulse Petected Pulse Puration

miLiseconos

This application starts with the selection of the pulse counting limit. Every time the
pin counter GPIO detects a transition from logic 0 to logic 1 the pulse detected
digits is incremented until it reaches the pulse limit. Also, the duty cycle of the
pulse output is controlled using the slider on the right most side. Note that the
duration set is in milliseconds and that it is multiplied by ten.

Pulse counting is terminated when the counting limit is set. Changing the counting
limit value will reset the counter to the preset value. This triggers the pin counter
to start all over again.

THIS SIMPLE PROJECT APPLICATION USES A FREQUENCY GENERATOR @ 10Hz TO PROVIDE
THE PULSE SIGNAL ON GPIO4. A SIMPLE 555/556 TIMER CAN BE USED TO GENERATE PULSES
TO TRIGGER THE PIN COUNTER.

Pulse Puration

miLiseconos

The pulse generator used in this application is an Agilent Arbitrary Waveform
Generator set to a frequency of 10 Hz. Set with an output voltage of 0-5 volt dc
peak voltage square wave output.

Page 11 of 13

www.4dsystems.com.au

APPLICATION NOTES 4D-AN-00065

The resulting output is monitored using an oscilloscope. Referring to the image
below, we can see that the output pulse is generated each time the pulse is
detected. This means that for a count limit of ten, the resulting output pulse will be
generated ten times. The generated output pulse will have a pulse duration from
the preset value.

For the connection of the generator and the oscilloscope, the probe were placed
adjacent to each other with their ground connected to the display module.

Page 12 of 13 www.4dsystems.com.au

APPLICATION NOTES 4D-AN-00065

Proprietary Information

The information contained in this document is the property of 4D Systems Pty. Ltd. and may be the subject of patents pending or granted, and must not be

copied or disclosed without prior written permission.

4D Systems endeavours to ensure that the information in this document is correct and fairly stated but does not accept liability for any error or omission. The
development of 4D Systems products and services is continuous and published information may not be up to date. It is important to check the current position
with 4D Systems.

All trademarks belong to their respective owners and are recognised and acknowledged.

Disclaimer of Warranties & Limitation of Liability

4D Systems makes no warranty, either expresses or implied with respect to any product, and specifically disclaims all other warranties, including, without
limitation, warranties for merchantability, non-infringement and fitness for any particular purpose.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates.
It is your responsibility to ensure that your application meets with your specifications.

In no event shall 4D Systems be liable to the buyer or to any third party for any indirect, incidental, special, consequential, punitive or exemplary damages
(including without limitation lost profits, lost savings, or loss of business opportunity) arising out of or relating to any product or service provided or to be
provided by 4D Systems, or the use or inability to use the same, even if 4D Systems has been advised of the possibility of such damages.

4D Systems products are not fault tolerant nor designed, manufactured or intended for use or resale as on line control equipment in hazardous environments
requiring fail — safe performance, such as in the operation of nuclear facilities, aircraft navigation or communication systems, air traffic control, direct life
support machines or weapons systems in which the failure of the product could lead directly to death, personal injury or severe physical or environmental
damage (‘High Risk Activities’). 4D Systems and its suppliers specifically disclaim any expressed or implied warranty of fitness for High Risk Activities.

Use of 4D Systems’ products and devices in 'High Risk Activities' and in any other application is entirely at the buyer’s risk, and the buyer agrees to defend,
indemnify and hold harmless 4D Systems from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or
otherwise, under any 4D Systems intellectual property rights.

Page 13 of 13 www.4dsystems.com.au

