
A
P

P
L

IC
A

T
IO

N
 N

O
T

E
S

ViSi Pin Counter and Pulse Out

DOCUMENT DATE: 13th April 2019

DOCUMENT REVISION: 1.1

W W W . 4 D S Y S T E M S . C O M . A U

APPLICATION NOTES 4D-AN-00065

Page 2 of 13 www.4dsystems.com.au

 Description

This Application note is intended to demonstrating to the user the set-up,

initialization and operation of the built-in pin counter and pulse output feature of

the Diablo16 display module.

 The target screen can be any of the following Diablo16 touch

display modules:

gen4-uLCD-24D
Series

gen4-uLCD-28D
Series

gen4-uLCD-32D
Series

gen4-uLCD-35D
Series

gen4-uLCD-43D
Series

gen4-uLCD-50D
Series

gen4-uLCD-70D
Series

uLCD-35DT uLCD-43D Series uLCD-70DT

Visit www.4dsystems.com.au/products to see the latest display

module products that use the Diablo16 processor.

 4D Programming Cable / µUSB-PA5/µUSB-PA5-II

for non-gen4 displays (uLCD-xxx)

 4D Programming Cable & gen4-IB / gen4-PA / 4D-UPA,

for gen-4 displays (gen4-uLCD-xxx)

 micro-SD (µSD) memory card

 Workshop 4 IDE (installed according to the installation document)

 When downloading an application note, a list of recommended

application notes is shown. It is assumed that the user has read or

has a working knowledge of the topics presented in these

recommended application notes.

https://www.4dsystems.com.au/product/gen4_uLCD_24D/
https://www.4dsystems.com.au/product/gen4_uLCD_24D/
https://www.4dsystems.com.au/product/gen4_uLCD_28D/
https://www.4dsystems.com.au/product/gen4_uLCD_28D/
https://www.4dsystems.com.au/product/gen4_uLCD_32D/
https://www.4dsystems.com.au/product/gen4_uLCD_32D/
https://www.4dsystems.com.au/product/gen4_uLCD_35D/
https://www.4dsystems.com.au/product/gen4_uLCD_35D/
https://www.4dsystems.com.au/product/gen4_uLCD_43D/
https://www.4dsystems.com.au/product/gen4_uLCD_43D/
https://www.4dsystems.com.au/product/gen4_uLCD_50D/
https://www.4dsystems.com.au/product/gen4_uLCD_50D/
https://www.4dsystems.com.au/product/gen4_uLCD_70D/
https://www.4dsystems.com.au/product/gen4_uLCD_70D/
https://www.4dsystems.com.au/product/uLCD_35DT/
https://www.4dsystems.com.au/product/uLCD_43D/
https://www.4dsystems.com.au/product/uLCD_70DT/
http://www.4dsystems.com.au/products
https://www.4dsystems.com.au/product/4D_Programming_Cable/
https://www.4dsystems.com.au/product/uUSB_PA5/
https://www.4dsystems.com.au/product/4D_Programming_Cable/
https://www.4dsystems.com.au/productpages/gen4-IB/downloads/gen4-IB_datasheet_R_1_2.pdf
https://www.4dsystems.com.au/product/gen4_PA/
https://www.4dsystems.com.au/product/4D_UPA/
https://www.4dsystems.com.au/product/uSD_4GB_Industrial/
https://www.4dsystems.com.au/product/4D_Workshop_4_IDE/

APPLICATION NOTES 4D-AN-00065

Page 3 of 13 www.4dsystems.com.au

 Content

Description ... 2

Content ... 3

Application Overview ... 3

The DIABLO16 Embedded Graphics Processor ... 3

Setup Procedure ... 4

Create a New Project ... 4

Design the Project .. 5

The ViSi - based application project .. 6

The Include Section .. 6

The main program ... 6

The micro-SD initialization ... 6

The initial image display and image touch setup segment 7

The GPIO setup sub-routine.. 8

The repeat-forever image touch detect loop 8

The moveSlider1() sub-routine ... 8

The count() sub-routine ... 9

The pin counter detect condition ... 10

The pulse_out() sub-routine .. 10

Running the project ... 11

Proprietary Information ... 13

Disclaimer of Warranties & Limitation of Liability 13

 Application Overview

This document is focused on the fundamental usage of the built-in pin counter and

pin output pulse feature of the DIABLO16 Embedded Graphics Processor. A pulse

is a simple transition from a logic 0 to a logic 1 or vice versa. The DIABLO16 pin

counter feature enables detection of the transition in either ways. Diablo16 OGM

and Diablo16 display module has a total of 6 pin counter channels. These pin

counters are supported in 6 particular GPIO terminals.

Also included in this application is the pulse out feature of the DIABLO16 embedded

graphics processor. The pulse out is a square wave signal generator that can has a

variable duty cycle. The DIABLO16 has a straight forward function to generate this

pulse which can be used to momentarily turn on and off an isolated output. The

pulse out feature of the DIABLO16 is a ‘one-shot’ square-wave signal.

The DIABLO16 Embedded Graphics Processor

http://www.4dsystems.com.au/product/1/133/4D_Intelligent_Display_Modules/DIABLO16-OGM/
http://www.4dsystems.com.au/product/1/132/4D_Intelligent_Display_Modules/uLCD_70DT/

APPLICATION NOTES 4D-AN-00065

Page 4 of 13 www.4dsystems.com.au

Driving the display and peripherals is the DIABLO16 embedded graphics processor,

a very capable and powerful chip which enables stand-alone functionality,

programmed using the 4D Systems Workshop 4 IDE Software. The Workshop IDE

enables graphic solutions to be constructed rapidly and with ease due to its design

being solely for 4D’s graphics processors.

The DIABLO16 Processor offers considerable FLASH and RAM upgrades over the

PICASO processor, and also provides map-able functions such as I2C, SPI, Serial,

PWM, Pulse Out, and Quadrature Input, to various GPIO, and also provide up to 4

Analogue Input channels.

Setup Procedure

For instructions on how to launch Workshop 4, how to open a ViSi project,

and how to change the target display, kindly refer to the section “Setup

Procedure” of the application note

ViSi Getting Started - First Project for Picaso and Diablo16

Create a New Project

For instructions on how to create a new ViSi project, please refer to the

section “Create a New Project” of the application note

ViSi Getting Started - First Project for Picaso and Diablo16

http://www.4dsystems.com.au/product/DIABLO16/
http://www.4dsystems.com.au/product/DIABLO16/
http://www.4dsystems.com.au/appnote/4D-AN-00119/
http://www.4dsystems.com.au/appnote/4D-AN-00119/

APPLICATION NOTES 4D-AN-00065

Page 5 of 13 www.4dsystems.com.au

Design the Project

To create a simple program that will be able activate and initialize the DIABLO16

pulse input and pulse output, we will need to use some commands enlisted in the

DIABLO 4DGL Internal Functions.

The DIABLO16 embedded graphics processor has a total of 6 and 10 configurable

GPIO for the pin counter and pin pulse out feature, respectively. Referring to the

chart below, we will see that these output pins can be used alternately with other

processor I/O function support.

 These general purpose I/O pins for the PWM output does not follow any

arrangements. The pins may be used readily, after configuring the function setup,

according to the user’s needs. These I/O pins are located similar to the image.

The DIABLO16 configurable I/O are a group of 3.3 volts TTL level terminals but these

are tolerant to a maximum of 5 volts. Anything greater than or less than the

specified operating voltage may prohibit proper communication or even damage

the embedded graphics processor.

The 2x15 male header pin

assignment of the DIABLO16

70DT. The previous table on

pin function configuration

option are lumped together

with several other specific

purpose pins.

http://www.4dsystems.com.au/product/DIABLO16/

APPLICATION NOTES 4D-AN-00065

Page 6 of 13 www.4dsystems.com.au

The ViSi - based application project

For this application project a slider and three LED digits will be needed. Add objects

by navigating to the Layout the objects similar to the one below.

After all the objects have been laid-out, let’s continue with the other half which

involves the coding of the project. This will be presented in a sectional manner so

as not to create confusion with the project. For an in-depth detail of the functions

used in this application note please refer to the DIABLO16 Internal Functions

Reference Manual.

The Include Section

This project starts with the identification of the platform being used as declared by

the #platform function. For the program to be able to function properly files are

included herein using the #inherit function.

In this application note, pulseConst.inc, contains all the information about the

objects that are used in the project. Meanwhile, the leddigitsdisplay.inc contains

the function for the proper operation of the led digits objects.

The main program

The main program for this project contains several sections: the mounting of the

micro-SD card, the initial displaying and image touch setup for objects, the repeat-

forever loops which contains the pulse counter detection condition and touch

conditions. Also, the main program calls out sub-routine functions that perform a

particular function.

The micro-SD initialization

Let’s start with the initialization of the uSD card. The uSD card contains all the image

information about the objects used in the project. The object information and data

are saved under a *.DAT and a *.GCI filename extension which is copied to the uSD

during project compilation. Mounting of the disk in this application note was done

using the following set of program statements.

http://www.4dsystems.com.au/product/DIABLO16/downloads
http://www.4dsystems.com.au/product/DIABLO16/downloads

APPLICATION NOTES 4D-AN-00065

Page 7 of 13 www.4dsystems.com.au

When starting a new project in the ViSi environment these set of statements are

already included in the coding area. The last part of this set of statements uses a

function file_LoadImageControl() to call on the object data/information files on the

uSD drive. This initializes the data to be called in using the variable ‘hndl’.

Having been able to load and initialize the uSD drive, the processor is now able to

access the information stored therein. As mentioned from the previous section, the

filenames with an extension of DAT and GCI has the image data and information.

Therefore, the next part of the main program is to

display all the objects that were placed on the

Workshop IDE form viewer. To do so, a special button

from the Object Inspector can help reduce the time of

coding of this part. The ‘Paste Code” simply pastes

object code into the coding area.

The initial image display and image touch setup segment

In this part of the program, the img_Show() function calls out the object image

and information found in the microSD drive. This set of statements displays every

object that were included in the application project. The displaying of the images

is directly done using the img_Show() function.

The statements in this segment of the program displays all the images and slider.

We have displayed all the slider and LED digit images that were used to provide the

value for the width of the modulated pulse. Moving to the next part of the main

program, this segment is all related to the image touch detection setup.

This statements uses the img_SetWord() function. The primary objective of this set

of statement is to enable the touch detection for the slider image. The slider images

on this project serves as input objects which utilizes the touch feature of the device.

At the end, of this segment we would notice that the touch feature of the device

was enabled using the touch_Set(TOUCH_ENABLE) statement.

APPLICATION NOTES 4D-AN-00065

Page 8 of 13 www.4dsystems.com.au

The GPIO setup sub-routine

The purpose of this sub-routine is to simplify the presentation of the program

statements in this document. When using the GPIO pins for a special function, it is

always best that the direction of data is assigned.

Below is the sub-routine being called in by the gpio_setup() function. It can be

observed that the GPIO PA4 is being set as an input pin while the PA5 is set as

output. The pins are assigned respectively using the pin_Set() function. The

pokeW() function at the end of this routine is used to trigger the pin counter of PA4

to count single transitions as denoted by the 0xFFFF to 0x0000 rollover transition.

The repeat-forever image touch detect loop

At this end part of the main program, the routine was to detect any activity on the

touch screen. Please refer to the image on the next page. Three touch states were

included in the repetitive routine: the detection for a pressed state, a released

state, and a moving state. Prior to the touch detection, a variable ‘n’ is assigned to

store temporary image touch detection result. The img_Touched() function checks

the object being touched and return the name of the object enlisted in the variable

‘hndl’. Deploy

Moving to the touch detection routines, when a touch status of ‘pressed’ is

detected the value of the coordinates are saved on the variables x and y.

The most significant segment of this routine is the moving touch state, it is in this

conditional loop that the image touch detection is made use. If a touch was

detected over the slider image, a sub-routine or a function is called upon and

executed by the processor.

Let us take the above statement as an example. From the start of the repeat-

forever loop, the img_Touched() function saves the result of an image touch to a

variable ‘n’, this is then checked in the touch moving conditional statements. If it

proves to be equal to one of the conditions then the sub-routine will be executed.

For this statement a moveSlider1() sub-routine is being called and executed.

Referring to the image following this section, we -can see that if the touched image

is equivalent to one of the if-conditions then a particular sub-routine is called in.

The moveSlider1() sub-routine

Whenever the touch detection results to the slider1 image being touched, the

processor is directed to run the statements contained in the sub-routine.

APPLICATION NOTES 4D-AN-00065

Page 9 of 13 www.4dsystems.com.au

The first part of the sub-routine includes the slider codes that are automatically

generated using the ‘Paste Code’ tab on the object inspector window. This is also

true with the LED digits objects. The paste code function is a very good tool to

minimize the coding of the objects.

From the previous set of statements the resulting mathematical value of the slider

position is stored in the variable ‘posn’. In turn, this value is displayed using the

Leddigits4 object. The frame index value is pointed by any change in the value of

‘posn’.

At the end of the subroutine, a processed value is returned. The returned value is

used as the time-base for the pulse out square wave signal width. The result of the

change in the returned value will be seen in the succeeding sections of this

documentation.

The count() sub-routine

Whenever the result of the image touch results to the slider1 being pressed or

moved the processor is directed to execute the count() subroutine. This sub-

routine contains the ‘Paste Code’ generated statements for the slider1 and Led

digits to display.

The resulting value is saved on the local variable ‘posn’. This value is again used in

the Led digits statement to point the frame index and display the current value.

APPLICATION NOTES 4D-AN-00065

Page 10 of 13 www.4dsystems.com.au

Notice at the end of the count() sub-routine that a value pulse is returned. This

value will be used to point to the pin counter limit. Whenever the pin count reaches

this value then the pulse out will be triggered.

The use of the values provided by the count() and the moveSlider() subroutines will

be shown in the succeeding section of this document.

The pin counter detect condition

The detection of the transition for the pulse input to the GPIO pin PA5 can be set

to follow a rising edge or a falling or both.

For this application, the input pulse detection set was set for a low logic to high

logic transition using the argument COUNT_RISE. Referring to the statements

shown above, the while(pin_read()) detects the status of the GPIO PA4. Any

transition detected will execute the statements enclosed in the while-wend

condition loop.

The pin_Counter() function directs the processor to assign the PA4 GPIO to detect

all rising edge transitions up to the number of pulses set using the pokeW() function

from the setup_gpio() during the initial run.

The pokeW() function is used to write values to the PIN_REGISTER_PA4 a value

between 0xFFFF and 0x0000. The number of pulses subtracted from the 0xFFFF

gives the number for the counter before rolling over to zero. The

PIN_COUNTER_PAx register needs to be re-armed each time after the pin counter

rolls over to zero. Each time a transition is detected on the GPIO the counter is

increased moving to the value 0xFFFF.

The pulse_out() sub-routine

Each time that a logic transition is detected on the PA4, the output_pulse() sub-

routine is called and executed. Each time this routine is called the pulse detected

counter LED digits is increased.

From the previous sections of this documents, recall that the slider-related sub-

routines return a value each time there are changes in the slider values. These

values which are returned using the global variables are utilized in the

output_pulse() sub-routine. The ‘duration’ give the width of the square wave pulse

signal generated on GPIO PA5. Likewise, the limit of the pulse detection is limited

to the value given by the count() sub-routine.

APPLICATION NOTES 4D-AN-00065

Page 11 of 13 www.4dsystems.com.au

Running the project

Compile and download the program to the display module. Having been able to

complete this step, the next step that needs to be done is to provide the pulsating

input on the GPIO PA4. Inputs to this pin are limited to an approximate value of

1Khz.

For the sole purpose of demonstration, a digital arbitrary waveform generator is

used to provide the logic transitions. Furthermore, to clearly visualize the output

of the GPIO PA5 – that is the pulse output, an oscilloscope will be used to view this

waveform.

This application starts with the selection of the pulse counting limit. Every time the

pin counter GPIO detects a transition from logic 0 to logic 1 the pulse detected

digits is incremented until it reaches the pulse limit. Also, the duty cycle of the

pulse output is controlled using the slider on the right most side. Note that the

duration set is in milliseconds and that it is multiplied by ten.

Pulse counting is terminated when the counting limit is set. Changing the counting

limit value will reset the counter to the preset value. This triggers the pin counter

to start all over again.

The pulse generator used in this application is an Agilent Arbitrary Waveform

Generator set to a frequency of 10 Hz. Set with an output voltage of 0-5 volt dc

peak voltage square wave output.

APPLICATION NOTES 4D-AN-00065

Page 12 of 13 www.4dsystems.com.au

The resulting output is monitored using an oscilloscope. Referring to the image

below, we can see that the output pulse is generated each time the pulse is

detected. This means that for a count limit of ten, the resulting output pulse will be

generated ten times. The generated output pulse will have a pulse duration from

the preset value.

For the connection of the generator and the oscilloscope, the probe were placed

adjacent to each other with their ground connected to the display module.

APPLICATION NOTES 4D-AN-00065

Page 13 of 13 www.4dsystems.com.au

Proprietary Information

The information contained in this document is the property of 4D Systems Pty. Ltd. and may be the subject of patents pending or granted, and must not be

copied or disclosed without prior written permission.

4D Systems endeavours to ensure that the information in this document is correct and fairly stated but does not accept liability for any error or omission. The

development of 4D Systems products and services is continuous and published information may not be up to date. It is important to check the current position

with 4D Systems.

All trademarks belong to their respective owners and are recognised and acknowledged.

 Disclaimer of Warranties & Limitation of Liability

4D Systems makes no warranty, either expresses or implied with respect to any product, and specifically disclaims all other warranties, including, without

limitation, warranties for merchantability, non-infringement and fitness for any particular purpose.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates.

It is your responsibility to ensure that your application meets with your specifications.

In no event shall 4D Systems be liable to the buyer or to any third party for any indirect, incidental, special, consequential, punitive or exemplary damages

(including without limitation lost profits, lost savings, or loss of business opportunity) arising out of or relating to any product or service provided or to be

provided by 4D Systems, or the use or inability to use the same, even if 4D Systems has been advised of the possibility of such damages.

4D Systems products are not fault tolerant nor designed, manufactured or intended for use or resale as on line control equipment in hazardous environments

requiring fail – safe performance, such as in the operation of nuclear facilities, aircraft navigation or communication systems, air traffic control, direct life

support machines or weapons systems in which the failure of the product could lead directly to death, personal injury or severe physical or environmental

damage (‘High Risk Activities’). 4D Systems and its suppliers specifically disclaim any expressed or implied warranty of fitness for High Risk Activities.

Use of 4D Systems’ products and devices in 'High Risk Activities' and in any other application is entirely at the buyer’s risk, and the buyer agrees to defend,

indemnify and hold harmless 4D Systems from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or

otherwise, under any 4D Systems intellectual property rights.

