
A
P

P
L

IC
A

T
IO

N
 N

O
T

E
S

ViSi DIP Switch

DOCUMENT DATE: 21st May 2019

DOCUMENT REVISION: 1.1

W W W . 4 D S Y S T E M S . C O M . A U

APPLICATION NOTES 4D-AN-00066

Page 2 of 16

 www.4dsystems.com.au

 Description

This Application Note shows how to add and configure a DIP switch, one of

the widgets available in Workshop. Before getting started, the following are

required:

 Any of the following 4D Picaso display modules:

gen4-uLCD-24PT gen4-uLCD-28PT gen4-uLCD-32PT
uLCD-24PTU uLCD-28PTU uVGA-III

and other superseded modules which support the ViSi Genie

environment

 The target module can also be a Diablo16 display

gen4-uLCD-24D series gen4-uLCD-28D series gen4-uLCD-32D series
gen4-uLCD-35D series gen4-uLCD-43D series gen4-uLCD-50D series
gen4-uLCD-70D series
uLCD-35DT uLCD-43D Series uLCD-70DT

Visit www.4dsystems.com.au/products to see the latest display

module products that use the Diablo16 processor. The display

module used in this application note is the uLCD-32PTU, which is a

Picaso display. This application note is applicable to Diablo16 display

modules as well.

 4D Programming Cable / µUSB-PA5/uUSBPA5-II

for non-gen4 displays (uLCD-xxx)

 4D Programming Cable & gen4-IB / 4D-UPA / gen4-PA

for gen4 displays (gen4-uLCD-xxx)

 micro-SD (µSD) memory card

 Workshop 4 IDE (installed according to the installation document)

 Any Arduino board with a UART serial port

 4D Arduino Adaptor Shield (optional) or connecting wires

 Arduino IDE

When downloading an application note, a list of recommended application

notes is shown. It is assumed that the user has read or has a working

knowledge of the topics presented in these recommended application

notes.

The ViSi-Genie project and the Arduino sketch are provided as

examples to help you along this application note.

https://www.4dsystems.com.au/product/gen4_uLCD_24PT/
https://www.4dsystems.com.au/product/gen4_uLCD_28PT/
https://www.4dsystems.com.au/product/gen4_uLCD_32PT/
http://www.4dsystems.com.au/product/1/7/4D_Intelligent_Display_Modules/uLCD_24PTU/
http://www.4dsystems.com.au/product/1/8/4D_Intelligent_Display_Modules/uLCD_28PTU/
http://www.4dsystems.com.au/product/1/124/4D_Intelligent_Display_Modules/uVGA_III/
https://www.4dsystems.com.au/product/gen4_uLCD_24D/
https://www.4dsystems.com.au/product/gen4_uLCD_28D/
https://www.4dsystems.com.au/product/gen4_uLCD_32D/
https://www.4dsystems.com.au/product/gen4_uLCD_38D/
https://www.4dsystems.com.au/product/gen4_uLCD_43D/
https://www.4dsystems.com.au/product/gen4_uLCD_50D/
https://www.4dsystems.com.au/product/gen4_uLCD_70D/
https://www.4dsystems.com.au/product/uLCD_35DT/
https://www.4dsystems.com.au/product/uLCD_43D/
https://www.4dsystems.com.au/product/uLCD_70DT/
http://www.4dsystems.com.au/products
http://www.4dsystems.com.au/product/17/114/Accessories/4D-Programming-Cable/
http://www.4dsystems.com.au/product/17/115/Accessories/uUSB-PA5/
http://www.4dsystems.com.au/product/17/114/Accessories/4D-Programming-Cable/
https://www.4dsystems.com.au/productpages/gen4-IB/downloads/gen4-IB_datasheet_R_1_2.pdf
https://www.4dsystems.com.au/product/4D_UPA/
https://www.4dsystems.com.au/product/gen4_PA/
https://www.4dsystems.com.au/product/uSD_4GB_Industrial/
http://www.4dsystems.com.au/product/10/120/Development/4D_Workshop_4_IDE/
http://arduino.cc/en/Main/Software
http://arduino.cc/en/Main/Software

APPLICATION NOTES 4D-AN-00066

Page 3 of 16

 www.4dsystems.com.au

 Content

Description ... 2

Content ... 3

Application Overview .. 3

Setup Procedure ... 4

Create a New Project ... 4

Design the Project ... 5

Uncomment the uSD Card Initialization Routine 5

Add a DIP Switch .. 6

Insert the DIP Switch Code ... 7

Change the DIP Switch State From 0 to 1 8

Control the DIP Switch with Touch .. 9

Enable Touch Detection 10

Check Touch Status 10

Check if the DIP Switch is Touched 10

Check if What Part of the DIP Switch is Touched 10

An Example ... 12

Run the Program ... 15

Proprietary Information .. 16

Disclaimer of Warranties & Limitation of Liability 16

 Application Overview

This application note explains how to configure a DIP switch in the WYSIWYG

screen, how to paste the generated code, and how to display the different

states. The various orientations and states of a DIP switch are shown below.

DIP Switch

Vertical Horizontal

Appearance State Appearance State

0

0

1

1

APPLICATION NOTES 4D-AN-00066

Page 4 of 16

 www.4dsystems.com.au

DIP Switch with n Positions

Vertical Horizontal

Appearance State Appearance State

0

0

1

1

n

n

Setup Procedure

For instructions on how to launch Workshop 4, how to open a ViSi project,

and how to change the target display, kindly refer to the section “Setup

Procedure” of the application note

ViSi Getting Started - First Project for Picaso and Diablo16

 Create a New Project

For instructions on how to create a new ViSi project, please refer to the

section “Create a New Project” of the application note

ViSi Getting Started - First Project for Picaso and Diablo16

http://www.4dsystems.com.au/appnote/4D-AN-00119/
http://www.4dsystems.com.au/appnote/4D-AN-00119/

APPLICATION NOTES 4D-AN-00066

Page 5 of 16

 www.4dsystems.com.au

 Design the Project

Uncomment the uSD Card Initialization Routine

Remove the block comment symbols as shown below.

The code screen will be updated accordingly, showing the block as an actual

part of the code for compilation.

Leave lines 28 and 29 as they are, since they are not needed in this

application.

The function file_LoadImageControl(fname1,fname2,mode) in line 30

creates an image control list. It requires two files – fname1 and fname2, the

.dat file and .gci file, respectively. These files are created by Workshop. The

C

APPLICATION NOTES 4D-AN-00066

Page 6 of 16

 www.4dsystems.com.au

GCI file contains all the graphics for the images and/or videos created by

Workshop. The DAT file contains one line for each image or video, that

names the object and gives its starting offset within the GCI and its initial

X/Y position. The function returns a handle (pointer to the memory

allocation) to the image control list that has been created. This handle will

be used to access and display objects, as will be shown later.

Add a DIP Switch

Go to the Widgets menu, select the Inputs pane, and click on the DIP switch

icon.

Once the DIP switch is selected, click on the WYSIWYG screen to place it.

The Object Inspector shows the different properties of the DIP switch object.

Apply the following property values to the DIP switch.

APPLICATION NOTES 4D-AN-00066

Page 7 of 16

 www.4dsystems.com.au

Insert the DIP Switch Code

Go to the code area and place the cursor just after the handle assignment

statement (line 32 in this example).

Having selected the DIP switch object, go to the Object Inspector and click

on the Paste Code button.

The code will be updated accordingly.

A new block for the DIP switch is generated, along with comments for each

line. Additional explanations are given below.

The statement in line 34

img_ClearAttributes (hndl, iDipswitch1, I_TOUCH_DISABLE);

enables the DIP switch object, Dipswitch1, for touch detection. Not doing

this will make Dipswitch1 unresponsive to touch.

The command img_Show(hndl,iDipswitch1) displays the DIP switch at the

default initial state – state 0.

Appearance State

C

APPLICATION NOTES 4D-AN-00066

Page 8 of 16

 www.4dsystems.com.au

0

Comment out the statements in lines 37, 39, and 40 for now.

Change the DIP Switch State From 0 to 1

Appearance State Appearance State

0

1

To change the state of the DIP switch, we use the command:

img_SetWord(hndl, iDipswitch1, IMAGE_INDEX, 1) ;

Here the value of IMAGE_INDEX for iDipswitch1 is set to 1. The

IMAGE_INDEX is the current frame of the object. There are two frames for

iDipswitch1 in this case – frame 0 and frame 1, each representing the object

at its different states. The following code will illustrate this.

//set iDipswitch1 to display frame 1

img_SetWord(hndl, iDipswitch1, IMAGE_INDEX, 1) ;

//display iDipswitch1

 img_Show(hndl, iDipswitch1);

//add a delay

pause(2000);

//set iDipswitch to display frame 0

img_SetWord(hndl, iDipswitch1, IMAGE_INDEX, 0) ;

//display iDipswitch1

 img_Show(hndl, iDipswitch1);

repeat

forever

Insert the code above to your main program. When compiled, it should

display the DIP switch at state 1 for 2 seconds, then at state 0 forever.

APPLICATION NOTES 4D-AN-00066

Page 9 of 16

 www.4dsystems.com.au

Control the DIP Switch with Touch

In this section we will configure the DIP switch to respond to touch. To do

this, we will try to simulate how a real DIP switch works.

State 0 Finger touch then drag State 1

State 0 Finger touch on lower
half part

Then release State 1

State 1 Finger touch then drag State 0

State 1 Finger touch on upper
half part

Then release State 0

C

C

C

C

C

C

C

C

APPLICATION NOTES 4D-AN-00066

Page 10 of 16

 www.4dsystems.com.au

Enable Touch Detection

Before using the touch feature, enable it with the function:

touch_Set(TOUCH_ENABLE);

To disable the feature, use the function:

touch_Set(TOUCH_DISABLE);

The touch detection feature runs in the background and disabling it when

not in use will free up extra resources for the 4DGL CPU cycles.

Check Touch Status

Now that the screen is enabled for touch detection, it needs to be constantly

checked for a change in state. The status of a touch response is retrieved by

using the following command:

touch_Get(TOUCH_STATUS);

Using the touch_Get() function returns a value depending on the current

state. Integers 0 to 3 or their MACRO equivalents are returned based on the

following results:

0 = NOTOUCH
1 = TOUCH_PRESSED
2 = TOUCH_RELEASED
3 = TOUCH_MOVING

Check if the DIP Switch is Touched

Of course the DIP Switch is only a part of the screen. When the screen is

touched, we need to know if the point of touch is within the region of

interest, which is the DIP switch. One way to do this is to use the function,

img_Touched(handle, index). This function returns back the index if the

image is touched or returns -1 if not.

 n := img_Touched(hndl, iDipswitch1)

 if(n == iDipswitch1)

 print(“iDipswitch1 is touched”);

 if(n == -1)

 print(“Touch is outside iDipswitch1);

 endif

Check if What Part of the DIP Switch is Touched

Finally, before deciding which state to display, it necessary that we

determine where the last point of touch occurred. To illustrate:

State 0 Finger touch on lower
half part

Then release State 1

C

C

APPLICATION NOTES 4D-AN-00066

Page 11 of 16

 www.4dsystems.com.au

State 1 Finger touch on upper
half part

Then release State 0

The model above can be coded as follows:

// Determine new position

DIPstate := (y - 100) / (60/2) ; // (y - top) / (height/ positions)

C

C

top

left

width

height

x

y

APPLICATION NOTES 4D-AN-00066

Page 12 of 16

 www.4dsystems.com.au

The formula

DIPstate := (y - top) / (height/ positions)

will assign either 0 or 1 to the variable DIPstate depending on the location

of touch and properties of the DIP switch object.

y y value of touch point

top location of the DIP switch along the y axis

height height of the DIP switch

positions number of positions of the DIP switch

For horizontally oriented DIP switch objects, the formula is

DIPstate := (x - left) / (width/ positions)

The formulas above are quite handy when dealing with objects with more

than two positions or states. Of course you can have your own way of

determining where the point of touch occurred within the object.

An Example

Below is a code for a program that initially displays a DIP switch at state 0.

The state will then change depending on what part of the switch is touched.

The code comes with a process flow chart to help explain the touch

detection part.

A Workshop file is attached containing the same code as shown below. For

the touch detection part, note that only the TOUCH_RELEASED state was

used in this program. There are two other states, namely TOUCH_PRESSED

and TOUCH_MOVING. You can easily modify the program and experiment

with these states.

APPLICATION NOTES 4D-AN-00066

Page 13 of 16

 www.4dsystems.com.au

#platform "uLCD-32WPTU"

// Program Skeleton 1.0 generated 5/12/2013 12:28:03 PM

#inherit "4DGL_16bitColours.fnc"

#inherit "VisualConst.inc"

#inherit "DIPSwitchTutorialConst.inc"

func main()

var state, x, y, n, DIPstate;

 putstr("Mounting...\n");

 if (!(disk:=file_Mount()))

 while(!(disk :=file_Mount()))

 putstr("Drive not mounted...");

 pause(200);

 gfx_Cls();

 pause(200);

 wend

 endif

 gfx_TransparentColour(0x0020);

 gfx_Transparency(ON);

 gfx_Cls();

 hndl := file_LoadImageControl("DIPSWI~1.dat", "DIPSWI~1.gci", 1);

 // Dipswitch1 1.0 generated 5/12/2013 12:29:58 PM

 img_ClearAttributes(hndl, iDipswitch1, I_TOUCH_DISABLE); // set to enable touch, only need to do this once

 img_Show(hndl,iDipswitch1) ; // show initial state at 0

 touch_Set(TOUCH_ENABLE);

 repeat //Start (process flow chart)

 state := touch_Get(TOUCH_STATUS); //get touch screen status

APPLICATION NOTES 4D-AN-00066

Page 14 of 16

 www.4dsystems.com.au

//--

 if(state == TOUCH_RELEASED) //if there's a release

 n := img_Touched(hndl,iDipswitch1);

 if(n == iDipswitch1) //check if object is touched

 x := touch_Get(TOUCH_GETX);

 y := touch_Get(TOUCH_GETY);

 DIPstate := (y - 100) / (60/2);

 img_SetWord(hndl, iDipswitch1, IMAGE_INDEX, DIPstate); //change state

 img_Show(hndl, iDipswitch1); //show state

 gfx_MoveTo(160,125); //move origin to point (160,125)

 print([BIN2Z]DIPstate); //print the value of DIPstate using a two-bit binary format

 else

 gfx_MoveTo(160,125); //move origin to point (160,125)

 print(n); //print -1, return value of img_Touched()

 endif //if object is not touched

 endif

 //--

 //--

 if(state == TOUCH_PRESSED) //if there's a press

 x := touch_Get(TOUCH_GETX); //do nothing

 y := touch_Get(TOUCH_GETY); //just get touch coordinates

 endif

 //--

 //--

 if(state == TOUCH_MOVING) //if there's movement

 x := touch_Get(TOUCH_GETX); //do nothing

 y := touch_Get(TOUCH_GETY); //just get touch coordinates

 endif

 //--

 forever //back to start (process flow chart)

endfunc

APPLICATION NOTES 4D-AN-00066

Page 15 of 16 www.4dsystems.com.au

Run the Program

For instructions on how to save a ViSi project, how to connect the target

display to the PC, how to select the program destination (this option is not

available for Goldelox displays), and how to compile and download a

program, please refer to the section “Run the Program” of the application

note

ViSi Getting Started - First Project for Picaso and Diablo16

The uLCD-32PTU and uLCD-35DT display modules are commonly used as
examples, but the procedure is the same for other displays.

http://www.4dsystems.com.au/appnote/4D-AN-00119/

APPLICATION NOTES 4D-AN-00066

Page 16 of 16 www.4dsystems.com.au

 Proprietary Information

The information contained in this document is the property of 4D Systems Pty. Ltd. and may be the subject of patents pending or granted, and must not be

copied or disclosed without prior written permission.

4D Systems endeavours to ensure that the information in this document is correct and fairly stated but does not accept liability for any error or omission. The

development of 4D Systems products and services is continuous and published information may not be up to date. It is important to check the current position

with 4D Systems.

All trademarks belong to their respective owners and are recognised and acknowledged.

 Disclaimer of Warranties & Limitation of Liability

4D Systems makes no warranty, either expresses or implied with respect to any product, and specifically disclaims all other warranties, including, without

limitation, warranties for merchantability, non-infringement and fitness for any particular purpose.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates.

It is your responsibility to ensure that your application meets with your specifications.

In no event shall 4D Systems be liable to the buyer or to any third party for any indirect, incidental, special, consequential, punitive or exemplary damages

(including without limitation lost profits, lost savings, or loss of business opportunity) arising out of or relating to any product or service provided or to be

provided by 4D Systems, or the use or inability to use the same, even if 4D Systems has been advised of the possibility of such damages.

4D Systems products are not fault tolerant nor designed, manufactured or intended for use or resale as on line control equipment in hazardous environments

requiring fail – safe performance, such as in the operation of nuclear facilities, aircraft navigation or communication systems, air traffic control, direct life

support machines or weapons systems in which the failure of the product could lead directly to death, personal injury or severe physical or environmental

damage (‘High Risk Activities’). 4D Systems and its suppliers specifically disclaim any expressed or implied warranty of fitness for High Risk Activities.

Use of 4D Systems’ products and devices in 'High Risk Activities' and in any other application is entirely at the buyer’s risk, and the buyer agrees to defend,

indemnify and hold harmless 4D Systems from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or

otherwise, under any 4D Systems intellectual property rights.

