@4 D SYSTEMS

ViSi The LED Digits Object

DOCUMENT DATE: 15t April 2019
DOCUMENT REVISION: 11

>
o
o
r
@
>
-
O
Z
Z
O
—)
rm
7

WWW.4DSYSTEMS.COM.AU

APPLICATION NOTES

4D-AN-00081

This application note is intended to demonstrating to the user the interconnection
of the 4D Systems Diablo16 display module with a ZIGBEE personal area network
module.

Before getting started, the following are required:
e Any of the following 4D Picaso display modules:

uLCD-24PTU uLCD-28PTU uVGA-III
gen4-uLCD-24PT gen4-uLCD-28PT gen4-uLCD-32PT

and other superseded modules which support the Designer
and/or ViSi environments.

e The target module can also be a Diablo16 display

gen4-ulLCD-24D gen4-ulLCD-28D gen4-ulLCD-32D
gen4-ulLCD-35D gen4-ulLCD-43D gen4-ulLCD-50D
gen4-ulLCD-70D
Series
uLCD-35DT uLCD-43D Series uLCD-70DT

Visit www.4dsystems.com.au/products to see the latest display module

products that use the Diablo16 processor.

e 4D Programming Cable / puUSB-PA5/uUSB-PA5-II
for non-gen4 displays (uLCD-xxx)

e 4D Programming Cable & gen4-IB / gen4-PA / 4D-UPA,
for gen-4 displays (gen4-uLCD-xxx)

e micro-SD (uSD) memory card

e Workshop 4 IDE (installed according to the installation document)

e When downloading an application note, a list of recommended
application notes is shown. It is assumed that the user has read or
has a working knowledge of the topics presented in these
recommended application notes.

Page 2 of 17 www.4dsystems.com.au

https://www.4dsystems.com.au/product/uLCD_24PTU/
https://www.4dsystems.com.au/product/uLCD_28PTU/
https://www.4dsystems.com.au/product/uVGA_III/
https://www.4dsystems.com.au/product/gen4_uLCD_24PT/
https://www.4dsystems.com.au/product/gen4_uLCD_28PT/
https://www.4dsystems.com.au/product/gen4_uLCD_32PT/
https://www.4dsystems.com.au/product/gen4_uLCD_24D/
https://www.4dsystems.com.au/product/gen4_uLCD_24D/
https://www.4dsystems.com.au/product/gen4_uLCD_28D/
https://www.4dsystems.com.au/product/gen4_uLCD_28D/
https://www.4dsystems.com.au/product/gen4_uLCD_32D/
https://www.4dsystems.com.au/product/gen4_uLCD_32D/
https://www.4dsystems.com.au/product/gen4_uLCD_35D/
https://www.4dsystems.com.au/product/gen4_uLCD_35D/
https://www.4dsystems.com.au/product/gen4_uLCD_43D/
https://www.4dsystems.com.au/product/gen4_uLCD_43D/
https://www.4dsystems.com.au/product/gen4_uLCD_50D/
https://www.4dsystems.com.au/product/gen4_uLCD_50D/
https://www.4dsystems.com.au/product/gen4_uLCD_70D/
https://www.4dsystems.com.au/product/gen4_uLCD_70D/
https://www.4dsystems.com.au/product/uLCD_35DT/
https://www.4dsystems.com.au/product/uLCD_43D/
https://www.4dsystems.com.au/product/uLCD_70DT/
http://www.4dsystems.com.au/products
https://www.4dsystems.com.au/product/4D_Programming_Cable/
https://www.4dsystems.com.au/product/uUSB_PA5/
https://www.4dsystems.com.au/product/4D_Programming_Cable/
https://www.4dsystems.com.au/productpages/gen4-IB/downloads/gen4-IB_datasheet_R_1_2.pdf
https://www.4dsystems.com.au/product/gen4_PA/
https://www.4dsystems.com.au/product/4D_UPA/
https://www.4dsystems.com.au/product/uSD_4GB_Industrial/
https://www.4dsystems.com.au/product/4D_Workshop_4_IDE/

APPLICATION NOTES 4D-AN-00081
Content Float Variables are not Allowed 12
Modify the Properties of the LED Digits Object 12
Description 2 . -

Change the Decimal Precision 12

Content 3
Change the Number of Digits 13

Application Overview 4
Resize and Move to a New Location 13

Setup Procedure 4
Create a New Project 4 Change the Colour 13
Design the Project 5 Leading Zeros 14
Add a LED Digits Object to Form1 5 Regenerate and Repaste the Code 14
Uncomment the uSD Card Initialization Routine 5 Update the Contents of the uSD Card 14
Paste and Modify the Code 6 Run basicLED2 14
The Include File 7 Limitations of the LED Digits Object 15
The Definition for ledDigitsDisplay(...) 8 Displaying Values Higher than 32,767 15
Initialize the Variable “numx” 9 Displaying Hexadecimal Numbers 15
Insert a Clear Screen Command 9 Displaying of Numbers with a Base Lower than 10 15
Run basicLED 9 Displaying Negative Values 15
Use a Loop to Drive the LED Digits Object 10 Change the Include File 16
Frames of Objects 10 Specify the Correct Number of Digits 16
Frames of a LED Digits Object 10 Displaying Values Lower than -32,768 16
Display a LED Digits Object Frame 11 Run the Program 16
Display the First Frame 11 Proprietary Information 17
Display the nth Frame 11 Disclaimer of Warranties & Limitation of Liability 17

Frame Index vs. Value Displayed 12

Page 3 of 17

www.4dsystems.com.au

APPLICATION NOTES

4D-AN-00081

Application Overview

The LED digits object or widget is very useful in displaying numerical values.
The digits in a LED digits object look like those in an actual seven segment
display. The user can modify the width, height, number of digits, decimal
precision, colour, and position of a LED digits object. The appearance
however is essentially fixed and cannot be modified. Users wanting to
display digits with a customised appearance will have to use the custom
digits object. The custom digits object requires the user to specify a bitmap
image from which the digits will be taken. The bitmap image is an image
strip containing the digits 0 to 9. To learn more about the custom digits
object, refer to the application note ViSi The Custom Digits Object.

This application note discusses the basic properties of the LED digits object
and shows how to drive the object using 4DGL routines. The limitations of
the LED digits object are then discussed together with their suggested
solutions. This application notes comes with three demo projects.

basicLED Shows the basics of using the LED digits object

basicLED2 Shows the basics of using the LED digits object

basicLED3 Shows how the LED digits object is used to display
negative values.

Setup Procedure

For instructions on how to launch Workshop 4, how to open a ViSi project,
and how to change the target display, kindly refer to the section “Setup
Procedure” of the application note

ViSi Getting Started - First Project for Picaso and Diablo16

Create a New Project

For instructions on how to create a new ViSi project, please refer to the
section “Create a New Project” of the application note

ViSi Getting Started - First Project for Picaso and Diablo16

Page 4 of 17

www.4dsystems.com.au

http://www.4dsystems.com.au/appnote/4D-AN-00204/
http://www.4dsystems.com.au/appnote/4D-AN-00119/
http://www.4dsystems.com.au/appnote/4D-AN-00119/

APPLICATION NOTES 4D-AN-00081

The Object Inspector shows the property of the newly created LED digits

Design the Project , o
object — Leddigits1.

Add a LED Digits Object to Form1

Select the LED digits icon as shown below. Object Inspector LAl
Form | Forml v
‘ Object | Leddigits1 W
@ n Wq Properties Paste Code
FIEM Hom Tools Widgets | Comms Project
, .A
Backgrounds Button: Diqits Gauges Inputs Labels Primitives System/Media
= Mame | eddigits1]
E 0 i Alizs Leddigits1
Color WcLack
Decimals 2
Digits 4
. . Height 35
Click on the WYSIWYG screen to place the object. .
LeadingZero Yes
Left 108
OutlineColar WeLack
Palette e

Uncomment the uSD Card Initialization Routine

Note that the uSD card initialization routine has been uncommented and
that the project has been saved with the name “basicLED”. If not familiar
with how to do these, refer to the application note ViSi Getting Started -
First Project for Picaso and Diablo16.

Page 5 of 17 www.4dsystems.com.au

http://www.4dsystems.com.au/appnote/4D-AN-00119/
http://www.4dsystems.com.au/appnote/4D-AN-00119/

APPLICATION NOTES 4D-AN-00081

Paste and Modify the Code
With the uSD card routine uncommented in the default code, place the
cursor just after the screen orientation initialization line like as shown

[¥gbasic ED

below.

[basic ED* [x]

not mounted. ..’

-

("basicLED.dat", "

Page 6 of 17 www.4dsystems.com.au

APPLICATION NOTES 4D-AN-00081

Click on the Paste Code button in the Object Inspector. Note: The remaining paramters for ledDigitsDisplay(...) are
automatically copied from the Object Inspector. This means

that if we change any property of a LED digits object either thru

Object Inspector I Bl

the WYSIWYG screen or the Object Inspector, we would need to
Form | Forml W

update its ledDigitsDisplay(...) line and all other instances of
Object |Leddigits1 W

this line in the code. We would also need to update the contents
of the uSD card. Otherwise, the LED digits object will be

Properties Paste Code

e rendered incorrectly.

Mame
Alizs Leddigits1
Colar MlsLack The Include File
Decimals 2

. 4 The function “ledDigitsDisplay(...)” is not internal to either the Picaso or

Diablo16 processor. It is defined in a separate header or include file.
The code area should be updated accordingly. Compiling the code at this point would yield the error shown below.

Error: 'ledDigitsDisplay' not found (line 36
file:basicLED. 4Dqg)

ndl, iLeddig)
tsDisplay (numx, iLeddigitsl+l,

The first line —img_Show(...) — simply displays the initial frame of Leddigits1
which is its “zero” state. The second line — ledDigitsDisplay(...) — displays a
frame of Leddigitsl. The variable “numx” determines the frame to be
displayed.

Page 7 of 17 www.4dsystems.com.au

APPLICATION NOTES

4D-AN-00081

To correct this, include the header file “ledDigitsDisplay.inc” in the code,
like as shown below.

|4 basicLED [x

"uLCD

"4DGL_lebit urs . fnc™

my

VisualConst.inc”

st.inc"

"ledDigitsDisplay.inc” -

The Definition for ledDigitsDisplay(...)
Put the cursor on the filename text of ledDigitsDisplay.inc.

#inherit "basicLEDConst.inc"

#inherit "ledDigitsDispflay.inc" -

B func main(}

Click on the right mouse button and choose the first option — Open file at
Cursor.

#inherit "basicLlE

Open file at Cursor Ctrl+Alt+0

Unde Ctrl+Z
Redo Ctrl+Y
Ctrl+C
Ctrl+X
Paste Ctrl+V
Delete

Select All Ctrl+A

Find func Definition F12

Context Sensitive help F1F
eIrrors

The file ledDigitsDisplay.inc should now open in another tab. Inside the file
is the definition for the function ledDigitsDisplay(...).

/| =

ledDigitsDisplay.inc [x

Page 8 of 17

www.4dsystems.com.au

APPLICATION NOTES

4D-AN-00081

Understanding the definition of the function ledDigitsDisplay(...), although
not really necessary at this point, is left to the reader as an exercise.

Initialize the Variable “numx”
Workshop automatically includes the variable “numx” when it generates the
code for a LED digits object.

Now this is not yet defined in the code, so we will have to declare and
initialize it before using it, like as shown below.

Alternatively, we can also write:
iLeddigitsl+l,

ledDigitsDisplay(

Insert a Clear Screen Command

Insert a clear screen command between the screen orientation initialization
line and the code block for Ledddigits1. This is to clear the strings printed
during the uSD card initialization routine.

(SCRE i N MODE, LANDS

Run basicLED

We are now ready to run the project. If not familiar with how to run a ViSi
project, proceed to the section “Run the Program”. The display module
should now render the first frame of Leddigits1, which, in this case, happens
to correspond to the value “00.00”.

Page 9 of 17

www.4dsystems.com.au

APPLICATION NOTES

4D-AN-00081

Use a Loop to Drive the LED Digits Object

Below, a repeat-until loop is used to make Leddigits1 display the values 0
until 99.

hndl, i 9
sDisplay (numx, i

Note that we simply copied the generated ledDigitsDisplay(...) line for
Leddigits1l and pasted it inside a repeat-until loop. Recompile the code and
download it again to the display module’s processor. Leddigitsl should
render its frames 0 to 99, which correspond to the values 00.00 to 00.99,
respectively.

Note also that only the code was modified (and not Leddigitsl in the
WYSIWYG area nor any of its properties in the Object Inspector). If only the
code alone is modified and not the object itself, there is no need to update
the contents of the uSD card mounted on the display module.

Frames of Objects

Objects or widgets can be classified as single-frame or multi-frame.
Examples of single-frame objects are those under the Backgrounds pane
(border, gradient, and scale), the label, the static text, and the image object.
These objects have only one frame of image inside them. The rest of the
objects are multi-frame since they contain two or more images. For
example, most of the objects under the Buttons pane are two-frame objects.
A meter object with minimum and maximum values of 0 and 100,
respectively, would have 101 frames of images inside it —one frame of image
to represent each state of the meter.

Frames of a LED Digits Object

Similarly, we can think of the LED digits object as containing multiple frames,
the number of which depends on the number of digits. A four-digit LED digits
object for example would have 10,000 frames of images inside it, since it
should be able to display all values between 0 and 9999.

In reality, the implementation of a LED digits object is quite different
compared to other objects. For instance, the meter object example above
has exactly 101 frames of images inside it. On the other hand, a LED digits
object, of any number of digits, has actually only 12 frames of images inside
it — one for each digit (0 to 9), one for a “blank digit”, and one for the
negative sign. Added to these, another image is created to represent the
“container” frame. The function ledDigitsDisplay(...) is used to properly
render the digits of a LED digits object to display any given value. To learn
more about the details of how a LED digits object isimplemented, interested
readers may study the definition for the function ledDigitsDisplay(...), which

Page 10 of 17

www.4dsystems.com.au

APPLICATION NOTES

4D-AN-00081

can be found by following the instructions described in the previous section
“The Include File”.

To facilitate this discussion, however, it is convenient at this point for the
reader to think that a four-digit LED digits object has 10,000 frames of
images inside of it, that these frames are indexed from 0 to 9,999, and that
each frame can be displayed by specifying its index value. We then use the
function ledDigitsDisplay(...) to display the desired frame, the index of which
is determined by the first parameter passed to the said function.

Display a LED Digits Object Frame

Display the First Frame
To display the first frame of a LED digits object, we write

ledDigitsDisplay(

iTeddigitsi+l,

A four-digit LED digits object with no decimal digits would look like as that
shown in the image below.

A four-digit LED digits object with two decimal digits would look like as that
shown in the image below.

Display the nth Frame
To display the sixth frame, for example, of a LED digits object, we write

ledDigitsDisplay (iLeddigitsl+l,

A four-digit LED digits object with no decimal digits would look like as that
shown in the image below.

A four-digit LED digits object with two decimal digits would look like as that
shown in the image below.

Page 11 of 17

www.4dsystems.com.au

APPLICATION NOTES

4D-AN-00081

Frame Index vs. Value Displayed

Note that the first parameter for ledDigitsDisplay(...) corresponds to the
frame index and not necessarily to the value being displayed. The first frame
may correspond to the value “0.0” or “0” depending on the properties of
the LED digits object. Likewise, the sixth frame, whose index value is 5, may
correspond to either “0.05” or “5”, which are not equivalent.

Float Variables are not Allowed

Also, as of writing, only an integer variable can be used as the first parameter
for the function ledDigitsDisplay(...). Thus, we cannot use a float variable or
an array as the first parameter for ledDigitsDisplay(...). To be able to display
decimal values, set the decimal precision property of the LED digits object
accordingly. Simple arithmetic may then be needed in the code so that
decimal values can be rendered using integers to specify the correct frame

index.
Mame
Alizs Leddigits1
Color WcLack
Decimals 2
Digits 4

Modify the Properties of the LED Digits Object

We will now modify the properties of Leddigitsl. Note again that any
modification done on Leddigits1 will require the uSD card contents and the
lines related to Leddigits1 in the code area to be updated.

Change the Decimal Precision
The decimal precision is changed from 2 to 0.

Object Inspector &3
Form | Formil W
Ohject | Leddigits1 W
Properties Paste Code

Property Value A

Decimals

Digits 4

Height 63

LeadinaZero Yes v

The WYSIWYG area should be updated accordingly.

Page 12 of 17

www.4dsystems.com.au

APPLICATION NOTES

4D-AN-00081

Change the Number of Digits
The value of the Digits property is changed from 4 to 5.

I

Cbject Inspector oz
Form Formil W
Chject | Leddigits1i W

Properties Paste Code

Property Value ~

Decimals i

Digits

Heinht 35 <

Resize and Move to a New Location

The edges of the box around Leddigits1 can be dragged to resize the object.
Also, the object itself can be dragged to another location in the WYSIWYG
area. The result is shown below.

Change the Colour
Change the colour like as shown below.

Object Inspector

Form |Form1

Object |Leddigits1

Properties Paste Code
El palette
High []yELLOW
Low WeLack
Top V]
Wifidth 161

s

&

The WYSIWYG area is updated accordingly.

Page 13 of 17

www.4dsystems.com.au

APPLICATION NOTES

4D-AN-00081

Leading Zeros
The LeadingZero property determines whether or not the insignificant

leading zeros will be displayed.

Object Inspector n&z
Form | Formal W
Object | Leddigits1 W
Properties Paste Code

Property Value ~
Color WcLack

Decimals]

Digits 5

Height

LeadingZera Mol]
Left]

OutlineColor WcLack

El Palette v

The WYSIWYG area is updated accordingly.

Regenerate and Repaste the Code

In the image below, the old ledDigitsDisplay(...) lines are commented out
and replaced with the updated version. The updated version can be
generated by clicking again on the Paste Code button of the Object

Inspector.

Update the Contents of the uSD Card

Any change made on the WYSIWYG area or the Object Inspector will cause
Workshop to generate a new set of supporting files for the project. Thus, we
will need to unmount the uSD card from the display module, mount it to the
PC, and let Workshop update the files.

Run basicLED2

Finally we compile the code and download the program to the processor.
With the updated uSD card mounted back to the display module, the new
program should now run. When the program runs, Leddigits1l should be
larger and should be on the top-left corner of the display. It should be yellow
in colour and the insignificant leading zeros should not be displayed.
Attached is another project — basicLED2. The project basicLED2 has the

Page 14 of 17

www.4dsystems.com.au

APPLICATION NOTES

4D-AN-00081

yellow LED digits object in it while basicLED has the green LED digits object
from our first example.

Limitations of the LED Digits Object

It would be logical to say that a five-digit LED digits object could display all
values between 0 and 99,999 — a total of 100,000 frames. Remember
however that the Picaso and Diablo16 are 16-bit processors, which means

I”

that the “normal” width of an integer data type is 16 bits. Signed number
operations further limit the maximum positive value of an integer variable
to 32,767 ([2'6/2]-1), since the other half of the range is used to represent
negative integer values. The maximum positive value therefore that an
integer variable can store is 32,767. This is also the maximum number that
the function “ledDigitsDisplay(...)”, defined in the include file
"ledDigitsDisplay.inc", can correctly render. The minimum value that can be
rendered by this function is zero. Using this function, attempting to write a
value beyond than these limits to a LED digits object would result to frames
with red X marks appearing on the object. The red X marks indicate that the
frame being accessed does not exist. Also, it wouldn’t make sense to create

a LED digits object with six or more digits in it.

Displaying Values Higher than 32,767

However, since the implementation of a LED digits object is different as
described in the section “Frames of a LED Digits Object”, it is possible to
create a routine that can render 32-bit values. For more information, refer
to the application note ViSi Displaying Large Integers with the LED Digits

Object.

Displaying Hexadecimal Numbers
As of writing, the LED digits object can render decimal values (base 10) only.
Displaying of hexadecimal values is not yet supported.

Displaying of Numbers with a Base Lower than 10

Displaying of numbers whose base is lower than 10, such as octal and binary
numbers, would be possible by using a correctly modified version of the
ledDigitsDisplay(...) function.

Displaying Negative Values

As previously mentioned, the ledDigitsDisplay(...) function defined in the
include file "ledDigitsDisplay.inc" can render values between 0 and 32,767
(inclusive). It cannot, however, render values between -1 and -32,768
(inclusive). To be able to render negative values, we need to use the
ledDigitsDisplay(...) function defined in another include file. This function
can correctly render values between -32,768 and 32,767 (inclusive).

Page 15 of 17

www.4dsystems.com.au

http://www.4dsystems.com.au/appnote/4D-AN-00200/
http://www.4dsystems.com.au/appnote/4D-AN-00200/

APPLICATION NOTES

4D-AN-00081

Change the Include File

Attached is the project “basicLED3”. This project shows how a LED digits
object is used to display negative numbers. First, note that we are now using
a different include file.

"4DEL lebitColours. fnc”

"YisualConst.inc™
L]

erit "basicLED3Const.inc'

erit "ledDigitsDisplay-ve.inc"

Specify the Correct Number of Digits

Second, note that the number of digits of Leddigitsl was changed from 5 to
6. This is because we want Leddigitsl to be able to display the value “-
32,768". Essentially, the negative sign requires an additional digit place. If
the number of digits were still “5” and we attempted to display the value “-
32,768”, the negative sign would be superimposed on the most significant

digit, like as shown below.

Therefore, when using the ledDigitsDisplay(...) function defined in the
include file “ledDigitsDisplay-ve.inc” to display negative values, determine

first the minimum value that needs to be displayed and make sure that the
correct number of digits is specified accordingly.

Displaying Values Lower than -32,768
The application note ViSi Displaying Large Integers with the LED Digits Object

shows how a project that can display 32-bit values (signed and/or unsigned)
is implemented.

Run the Program

For instructions on how to save a ViSi project, how to connect the target
display to the PC, how to select the program, and how to compile and
download a program, please refer to the section “Run the Program” of the
application note

ViSi Getting Started - First Project for Picaso and Diablo16

The uLCD-32PTU and ulLCD-35DT display modules are commonly used as
examples, but the procedure is the same for other displays.

Page 16 of 17

www.4dsystems.com.au

http://www.4dsystems.com.au/appnote/4D-AN-00200/
http://www.4dsystems.com.au/appnote/4D-AN-00119/

APPLICATION NOTES 4D-AN-00081

Proprietary Information

The information contained in this document is the property of 4D Systems Pty. Ltd. and may be the subject of patents pending or granted, and must not be

copied or disclosed without prior written permission.

4D Systems endeavours to ensure that the information in this document is correct and fairly stated but does not accept liability for any error or omission. The
development of 4D Systems products and services is continuous and published information may not be up to date. It is important to check the current position
with 4D Systems.

All trademarks belong to their respective owners and are recognised and acknowledged.

Disclaimer of Warranties & Limitation of Liability

4D Systems makes no warranty, either expresses or implied with respect to any product, and specifically disclaims all other warranties, including, without
limitation, warranties for merchantability, non-infringement and fitness for any particular purpose.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates.
It is your responsibility to ensure that your application meets with your specifications.

In no event shall 4D Systems be liable to the buyer or to any third party for any indirect, incidental, special, consequential, punitive or exemplary damages
(including without limitation lost profits, lost savings, or loss of business opportunity) arising out of or relating to any product or service provided or to be
provided by 4D Systems, or the use or inability to use the same, even if 4D Systems has been advised of the possibility of such damages.

4D Systems products are not fault tolerant nor designed, manufactured or intended for use or resale as on line control equipment in hazardous environments
requiring fail — safe performance, such as in the operation of nuclear facilities, aircraft navigation or communication systems, air traffic control, direct life
support machines or weapons systems in which the failure of the product could lead directly to death, personal injury or severe physical or environmental
damage (‘High Risk Activities’). 4D Systems and its suppliers specifically disclaim any expressed or implied warranty of fitness for High Risk Activities.

Use of 4D Systems’ products and devices in 'High Risk Activities' and in any other application is entirely at the buyer’s risk, and the buyer agrees to defend,
indemnify and hold harmless 4D Systems from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or
otherwise, under any 4D Systems intellectual property rights.

Page 17 of 17 www.4dsystems.com.au

