@4 D SYSTEMS

Serial Connection to an Arduino Host

DOCUMENT DATE: 20" May 2019
DOCUMENT REVISION: 11

>
o
o
C
O
>
.
O
Z
Z
O
—
M
wn

WWW.4DSYSTEMS.COM.AU

APPLICATION NOTES

4D-AN-00092

This Application Note explores the possibilities provided by the Serial
environment in Workshop for a 4D display module to work with an Arduino
host. In this example, the host is an Arduino Uno board. The host can also
be an Arduino Mega 2560 or Due. Ideally, the application described in this
document should work with any Arduino board that supports software serial
or with at least one UART serial port. See specifications of Aduino boards

here.

e Any of the following 4D Goldelox display modules:

uOLED-96-G2 uOLED-128-G2 uOLED-160-G2
uLCD-144-G2

or any superseded module that supports the Serial environment.
Visit www.4dsystems.com.au to see the latest products using the

Goldelox graphics processor.

e Any of the following Picaso display modules:

uLCD-24PTU uLCD-28PTU uVGA-III
gen4-uLCD-24PT gen4-uLCD-28PT gen4-uLCD-32PT

and other superseded display modules which support the ViSi
environment

e The target module can also be a Diablo16 display

gen4-ulLCD-24D gen4-ulLCD-28D gen4-ulLCD-32D
Series Series Series
gen4-ulLCD-35D gen4-ulLCD-43D gen4-ulLCD-50D
Series Series Series
gen4-uLCD-70D
Series
uLCD-35DT uLCD-43D Series uLCD-70DT

4D Programming Cable / pUSB-PA5/uUSB-PAS-II

for non-gen4 displays (uLCD-xxx)

4D Programming Cable & gen4-1B / gen4-PA / 4D-UPA,
for gen-4 displays (gen4-uLCD-xxx)

micro-SD (uSD) memory card

Workshop 4 IDE (installed according to the installation document)

When downloading an application note, a list of recommended
application notes is shown. It is assumed that the user has read or
has a working knowledge of the topics presented in these
recommended application notes.

Page 2 of 25

www.4dsystems.com.au

http://arduino.cc/en/Products.Compare
http://arduino.cc/en/Products.Compare
https://www.4dsystems.com.au/product/uOLED_96_G2/
https://www.4dsystems.com.au/product/uOLED_96_G2/
https://www.4dsystems.com.au/product/uOLED_128_G2/
https://www.4dsystems.com.au/product/uOLED_128_G2/
https://www.4dsystems.com.au/product/uOLED_160_G2/
https://www.4dsystems.com.au/product/uLCD_144_G2/
http://www.4dsystems.com.au/
https://www.4dsystems.com.au/product/uLCD_24PTU/
https://www.4dsystems.com.au/product/uLCD_28PTU/
https://www.4dsystems.com.au/product/uVGA_III/
https://www.4dsystems.com.au/product/gen4_uLCD_24PT/
https://www.4dsystems.com.au/product/gen4_uLCD_28PT/
https://www.4dsystems.com.au/product/gen4_uLCD_32PT/
https://www.4dsystems.com.au/product/gen4_uLCD_24D/
https://www.4dsystems.com.au/product/gen4_uLCD_24D/
https://www.4dsystems.com.au/product/gen4_uLCD_28D/
https://www.4dsystems.com.au/product/gen4_uLCD_28D/
https://www.4dsystems.com.au/product/gen4_uLCD_32D/
https://www.4dsystems.com.au/product/gen4_uLCD_32D/
https://www.4dsystems.com.au/product/gen4_uLCD_35D/
https://www.4dsystems.com.au/product/gen4_uLCD_35D/
https://www.4dsystems.com.au/product/gen4_uLCD_43D/
https://www.4dsystems.com.au/product/gen4_uLCD_43D/
https://www.4dsystems.com.au/product/gen4_uLCD_50D/
https://www.4dsystems.com.au/product/gen4_uLCD_50D/
https://www.4dsystems.com.au/product/gen4_uLCD_70D/
https://www.4dsystems.com.au/product/gen4_uLCD_70D/
https://www.4dsystems.com.au/product/uLCD_35DT/
https://www.4dsystems.com.au/product/uLCD_43D/
https://www.4dsystems.com.au/product/uLCD_70DT/
https://www.4dsystems.com.au/product/4D_Programming_Cable/
https://www.4dsystems.com.au/product/uUSB_PA5/
https://www.4dsystems.com.au/product/4D_Programming_Cable/
https://www.4dsystems.com.au/productpages/gen4-IB/downloads/gen4-IB_datasheet_R_1_2.pdf
https://www.4dsystems.com.au/product/gen4_PA/
https://www.4dsystems.com.au/product/4D_UPA/
https://www.4dsystems.com.au/product/uSD_4GB_Industrial/
https://www.4dsystems.com.au/product/4D_Workshop_4_IDE/

APPLICATION NOTES

4D-AN-00092

[T ol 1« 4 o 1N 2

00 1 =] o | N 3

AppPlication OVEIrVIEWcccceeeiiriieniirreiecerreneceseenaeeeeeenesesesensssssennsssssennnes 4

SEtUP ProCeAUIEScceveeeeireienecrrereeerrenaneesrennneerennsssrenssssssensssssennsssssennnns 4

Program the Arduino HOst...........coiiieeeciiiieccrrrrcc e e e nnnee s e ennnanns 4

INStall the LiDrary ... 4

Modify the Library for the Arduino DUe............ccovvvieeiiiiiniieeiiinn, 6

Open the Attached Arduino Sketch Files.......ccccovvivivviiiiiiiicinneenn, 7
Understanding the Arduino Demo Sketch (w/o Message

LOGOING) i 7

Include the Library Files 7

Define the Serial Port to be Used 8

The Acknowledgment Byte 8

The Error-handling Routine 10

Set the Timeout Limit 10

Set the Baud Rate 10

Reset the Arduino Host and the Display 11

Let the Display Start Up 12

Set the Screen Orientation 12

Clear the Screen 12

uSD Card Mount Routine 13

Send a String 13

Understanding the Arduino Demo Sketch (with Message

LOGOING) et 13
Enable Message Logging 13

Set the Baud Rate 14

Displaying Returned Values 14

The Error-handling Routine 14

Final Output 15

Connect the 4D Display Module to the Arduino Host..........cccccevenerrennenenn. 15
Using the New 4D Arduino Adaptor Shield (Rev 2.00)............... 15
Definition of Jumpers and Headers 15

Default Jumper Settings 16

Change the Arduino Host Serial Port 18

Power the Arduino Host and the Display Separately 18

Using the Old 4D Arduino Adaptor Shield (Rev 1)..................... 19
Connection Using Jumper WIreS ... 20
Changing the Serial Port of the Genie Program 21
Changing the Maximum String Lengthccccooeii. 23
Proprietary Information.........ccccovieeiiiiiieiiiiieciciirecrrec e 25
Disclaimer of Warranties & Limitation of Liabilitycccccccceereecrrnncrennnnnes 25

Page 3 of 25

www.4dsystems.com.au

APPLICATION NOTES

4D-AN-00092

Application Overview

In Serial Picaso Getting Started - The SPE Application the user was

introduced to how a 4D display module is configured as a serial slave device
and to the basics of the Serial Protocol.

Setup Procedures

The display must be configured as a slave device first before it can be controlled by
a host. For instructions on how to launch Workshop 4, how to connect the display
module to the PC, and how to configure the display as a slave device, kindly refer
to the section “Setup Procedure” of any of the application notes below. Choose
according to your display module’s processor.

Serial Goldelox Getting Started - The SPE Application

Serial Picaso Getting Started - The SPE Application

Serial Diablo16 Getting Started - The SPE Application

These application notes also introduce the user to the Serial Protocol thru the use
of the Serial Commander.

Program the Arduino Host

This section discusses the source code for the Arduino host for it to work
with the display module. It is assumed that the user has a basic
understanding of how the Arduino host works and how to program in the
Arduino IDE. Inexperienced users may need to frequently refer to the
Arduino website for more information.

Install the Library

The Arduino-4D Serial Libraries files, along with the BigDemo files, are
copied to your PC during Workshop 4 installation. See the folder shown
below (for Windows 8).

I) » Libraries » Documents » 40 Labs »

The 4D Labs contain 3 Serial folder namely ‘Picaso Serial’, ‘Goldelox Serial’
and ‘Diablo Serial’. Inside these folders are libraries for different
microcontrollers/microprocessors.

Page 4 of 25

www.4dsystems.com.au

http://www.4dsystems.com.au/appnote/4D-AN-00090/
http://www.4dsystems.com.au/appnote/4D-AN-00086/
http://www.4dsystems.com.au/appnote/4D-AN-00090/
http://www.4dsystems.com.au/appnote/4D-AN-00110/

APPLICATION NOTES 4D-AN-00092

. In Windows 8 for example, the library files will be saved here:
Documents library
40 Labs
Mame N d| Wt Usershdd- doffy Documentst Arduinot libraries
J SCRIPTS Mame Type
. RESOURCES)
J dht11 File folder
, POGAINTRO)
ds ; DS1307RTC File folder
. Picaso Visi Genie)))
. - dCes J geniefrduing File folder
. Picaso Visi
]] Goldelox_Senal_4DLib File falder
. Picaso Serial
.) ; Picaso_Senal_4DLib File folder
. Picaso Designer
| RTClib File folder
 Images
. Goldelox Vi5i

| Goldelox Serial Also, create a copy of the folder BigDemo inside Picaso_Serial_4DLib.

, Goldelox Designer

Diablo Serial
i i W Users'\dd- doff\Documentst Arduinotibranes Picaso_Senal_4DLib
J Diablo Designer
, Animated Buttons MNarne Type .
, 4DUpdates
-{ . BigDemo File folder
5 Mj Picaso_Serial_40Lib.c... CFFP File
ces | Picaso_Const4D.h H File

i Serial_4DLib.h H Fil
Copythefolder“Picaso_Serial_4DLib/Diablo_Serial_4DLib/Goldelox_Serial) Picaso_Serial ADLi -

_4DLib"” to where additional Arduino libraries are saved. Here is a link to a

tutorial on installing additional libraries in the Arduino IDE. The BigDemo folder contains the BigDemo.ino file, which demonstrates the

use of all the serial commands. The sketch presented in this application note

http://arduino.cc/en/Guide/Libraries is a simplified version of the BigDemo sketch.

Page 5 of 25 www.4dsystems.com.au

http://arduino.cc/en/Guide/Libraries

APPLICATION NOTES 4D-AN-00092

v Modify the Library for the Arduino Due
— If the host is an Arduino Due, one of the library files needs to be edited. For
Mame Type example open the file “Picaso_Serial_4DLib.cpp” (create a backup copy
| BigDemo.H H File before editing).
s 9 BigDemo.ino INO File
| @ Usersidd-doff\Documents\Arduinohlibraries\Picaso_Serial 4DLib)
Remember to restart the Arduino IDE after installing the library files. As a MName : Type

quick test, the BigDemo sketch should be accessible under the File —

E | 1. BigDemo File folder
xamples menu. _ .
3 E Picaso_ConstdD.h H File
02.Digital b _ . _ _
File| Edit Sketch Tools Help 03.Analog R = E Picaso_Serial_40Lib.cpp CPP File
Mew Chrl+ M 04.Communication * E Picaso_Serial_4DLib.h H File
Open.. Cirl+ 0 05.Control »
Sketchbook p D6densors g
Examples v 07.Display v Find the line shown below.
Close Ctrl+W LT g Picaso Serial 4DLib::Picaso Serial 4DLib(Stream * virtuwalPort) {
Save Ctrl+5 09.Us8 g _wvirtualPort = virtualPort;
Save As... P 10.StarterKit b » _virtualPort->FIEN() ;
Upload CtrleU ArduinolSP ¥
Upload Using Programmer Ctrl+Shift+L genieArduino " JEEEER R AR R R R R R R R A |
Page Setup Chrl+ Shifte P Picazo_Serial_4DLib » | BigDermno
- i » . .
Print Ctri+P RTClib Comment out the line so it becomes:
Time »
Preferences Ctrl+ Comma TimeAlarms 5 Picaso_Serial 4DLib::Picaso Serial 4DLib(Stream * virtualPort) {
_ _wvirtwalPort = virtualPort;
Quit Ctrl+Q EEPROM 3 //_virtualPort->flush(); // comment out as pointed by a f
Esplora 3 //PROBLEM WITH ARDUINO DUE modif
Ethernet R //Francois 3/8/20813
Er
¥
< Firmata 3 ;
Save the file.

Page 6 of 25 www.4dsystems.com.au

APPLICATION NOTES

4D-AN-00092

Note: This example is also applicable for Diablo Serial Library and Goldelox
Serial Library.

Open the Attached Arduino Sketch Files

There are two sketch files attached to this application note — a basic demo
sketch without message logging and another version with message logging.
Interested users can use the latter version for learning and debugging
purposes. Since the serial monitor uses the port Serial0 for logging
messages, either a software serial port or any of the other three hardware
serial ports can be used for the display.

, Arduino Sketch

Understanding the Arduino Demo Sketch (w/o Message Logging)
Open, compile, and download to the Arduino host the attached sketch
shown below. Note that comments have been added to the code for the
benefit of the user. Additional explanations now follow.

. 40-AN-00092
, 40-AN-00092 GOLDELOX SKETCH

Include the Library Files
For Picaso and Diablo Arduino Sketch:

FAA
#include "FPicaso_Serial 4DLib.h"
#include "Picaso_constdl.h™

Siaze Dizsplayierial to communicate with the display.
Picazso_Serial 4DLib Display(sDisplaySerial):
FiES

#include «<Diablo_ConstdD. o
#include <Diablo_3erial 4DLib.k>-

Siaze Displayierial to communicate with the display.
Diablo Serial 4DLik Display(eDisplaylerial);
*

1 vy

If Diablo16 Displays are going to be used, comment the lines that is pointed
by the red arrows to include the Diablo Serial Library and then remove the
comments ‘//’ pointed by the blue arrows to comment the inclusion of the
Picaso Serial Library.

Note: Goldelox example has a different Arduino sketch attached.

Page 7 of 25

www.4dsystems.com.au

APPLICATION NOTES

4D-AN-00092

Define the Serial Port to be Used
Here Serial0 will be used for communicating with the display module.

//1. Hardware ZSerial - choose a serial port

//default serial port for talking to the dij
#define DisplaySerial Serial

//#define DisplaySerial Seriall
//#define DisplaySerial SerialZ
//#define DisplaySerial Seriall

To use a software serial port, comment out the line for the hardware port
definition and uncomment the software serial port lines.

//1. Hardware ZSerial - choose a serial port

//default serial port for talking to the dij
*fﬁ#define DizplaySerial Serial

//#define DisplaySerial Seriall

//#define DisplaySerial SerialZ

//#define DisplaySerial Seriall

=

f/2. Boftware Serial - =set the desired pins

#include <SoftwareSerial.h>
hoftwareaerial DisplaySerial (10,11y ; // pii
//Boftwareferial 1= not vet supported by ths

If using the 4D Arduino Adaptor Shield and pins 10 and 11 are used as a
software serial port for communicating with the display, jumpers J3 and J4
(of the 4D Arduino Adaptor Shield) need to be set accordingly. See the
section “Connect the 4D Display Module to the Arduino Host” for more
details.

The line below tells the library that the serial port referred to by
DisplaySerial will be used for talking to the display.

//use Displayvferial to communicate with the display.

Picase SHerial 4DLib Display (&DisplaySerial);

The Acknowledgment Byte

When the display module receives a command from the host, it executes
the command and sends back an acknowledgment (and reply bytes if
necessary). It is very important that the Arduino host waits for the
acknowledgment (and reply bytes) before sending another command.
Section 2.4 Introduction and Guidelines to the Serial Protocol of the
Picaso/Diablo/Goldelox Serial Command Set Reference Manual emphasizes

this point.

Page 8 of 25

www.4dsystems.com.au

http://www.4dsystems.com.au/product/4D_Workshop_4_IDE/downloads

APPLICATION NOTES

4D-AN-00092

Commands should only be sent and their response received,
before another command is sent. If two commands are sent
before the first response is received, incorrect operation may

follow.

The built-in high-level commands of the Arduino-Picaso Serial Library are
coded such that they will automatically wait for an acknowledgment (and
reply bytes if there are) from the display. The simple command for clearing
the screen is taken as an example.

Display.gfx Cls()://clear the screen

Section 5.2.1 Clear Screen of the Picaso/Diablo/Goldelox Serial Command

Set Reference Manual describes in detail the command for clearing the

screen. Inside the library file “Picaso_Serial_4DLib.cpp”, the function
gfx_Cls() is defined as follows:

void Picaso Serial 4DLib::gfx Cls()
{

_wvirtualPort-s»print((char)(F_gfx Cls >» B));
_wvirtualPort-s»print((char)(F_gfx Cls));
GetAck();

¥

Note that after sending off the command bytes, the routine now calls on the
function GetAck(), which will wait for the ACK byte from the display module.

Many of the basic commands (i.e., those that do not necessarily require a

specific reply from the display module besides the ACK byte) are coded in a
manner similar to this.

Now the function GetAck() is also defined in Picaso_Serial_4DLib.cpp.
Essentially, GetAck() waits for the ACK byte from the display for a certain
period of time. If the ACK byte is received within the time limit, the function
exits and the program goes back to the main loop. If nothing is received
within the specified waiting time limit, GetAck() calls on the error-handling
routine, passing to it two arguments — an integer for indicating that a
timeout has occurred and a character which holds an insignificant value. If a
byte other than the ACK byte is received, GetAck () calls on the error
handler, passing to it two arguments — an integer for indicating that a NAK
condition has occurred and a character which holds the value of the invalid
byte received.

The user now has the option of writing the routine for handling errors. The
function mycallback() of the demo sketch is an example of such a routine.
One important thing to remember is that when the library calls on the error-
handling routine, it will pass to it two arguments — an integer and a
character. To let the library know which function to call when an error
occurs, write the line shown below at the start of the program.

vold setup) |
//as=zign the function for handling errors
Dizplay.CallbackdD = mycallback ;

Page 9 of 25

www.4dsystems.com.au

http://www.4dsystems.com.au/product/4D_Workshop_4_IDE/downloads
http://www.4dsystems.com.au/product/4D_Workshop_4_IDE/downloads

APPLICATION NOTES

4D-AN-00092

The Error-handling Routine

The function mycallback() will execute when an error occurs (i.e., the
display has taken too long to respond or it has sent back a reply other than
the expected ACK byte).

vold mycallback (int ErrCode, unsigned char Errorbyte)
{
// Pin 13 has an LED connected on mest Ardulnoe koar
int led = 13;
pinMode (led, OQUTPUT) ;
while (1)
{
digitalWrite (led, HIGH);
delay (2007 ;
digitalWrite {led, LOW);
delay (2007 ;

;4 turn the LED on (HI
/f walt for a second
/¢ turn the LED off by

Jf walt for a second

Note that mycallback() will only blink the LED at pin 13 indefinitely. The user
may also use this function to reset the display and re-establish
communications. When an error occurs, it would be improper for the
program to proceed further without resetting the display. Again,

Commands should only be sent and their response received,
before another command is sent. If two commands are sent
before the first response is received, incorrect operation may

follow.

In the other version of this sketch (that which has a message logging
feature), the error handler uses the integer and character arguments passed
to it to specify the exact nature of the error.

Set the Timeout Limit
Set how long the host will wait for replies coming from the display by writing
the line shown below at the start of the program.

/45 second timeout on all commands
Display.TimeLimit 4D = 5000 ;

Set the Baud Rate
Communication with the display is set at 9600 bps.

fistart
DigplaySerial.begin(9600) ;

Logically, the 4D display should also communicate with the Arduino host at
the same baud rate. To check the baud rate of the display module check the
baud rate indicated on the Serial Platform Environment (SPE) application
splash screen.

Page 10 of 25

www.4dsystems.com.au

APPLICATION NOTES

4D-AN-00092

4D Systens

C -32PTU

SPE2 rev 1.2
PmnC rev 4.0
Comms 9600

Comms 9600

4D Systems (c¢c)2014

Getting Started:
Please refer to the
Quick Start Cuide on the

uLCD-32PTU Product P
from the 4D Systems Hebsite.

Reset the Arduino Host and the Display
To make resetting more convenient, the code below resets the display
module when the program is restarted.

//Rezet the Dizplay (change D4 to D2 if you have o
pinMode (4, OUTPUT); // Set D4 on Arduinc toe Outpu
digitalWrite (4, 1); // Reset the Display via D4
delay (1007 ;
digitalWrite (4, 0);

// unReset the Display via D4

If using the new 4D Arduino Adaptor Shield (Rev 2)

Note that the GPIO pin D4 of the Arduino host is used here for resetting the
display. When using the new 4D Arduino Adaptor Shield (Rev 2.00 written
on the PCB), make sure that pin RES is connected to pin AR in jumper J1. See
the section “Connect the 4D Display Module to the Arduino Host”. If using
the old 4D Arduino Adaptor Shield (Rev 1), simply change the code above.
Use pin 2 instead of pin 4.

//Rezet the Diszplay (change D4 to D2 if vou have o
pinMode (2, OUTPUT); // Set D4 on Arduinoe to Output
digitalWrite (2, 1); // Reset the Display wvia D4
delay (1007 ;

digitalWrite {2, 0);

// unReset the Display wvia D4

If using the old 4D Arduino Adaptor Shield (Rev 1)

If using jumper connecting wires, connect the RESET pin of the display
modaule to the D4 pin of the Arduino with a 1kohm series resistor in between
(see the section “Connect the 4D Display Module to the Arduino Host”),
and modify the code as shown below.

Page 11 of 25

www.4dsystems.com.au

APPLICATION NOTES

4D-AN-00092

//Reset the Display (changs D4 to D2 if vou have oy
pinMode (4, OUTPUT):; // SZet D4 on Arduinc to Output
digitalWrite (4, 0); // Rezet the Display wia D4
delay (1007 ;

digitalWrite (4, 1); /F/ unREeset the Display via D4

If using jumper wires

Note that the logic state for resetting the display is now 0 instead of 1. This
is because the display module’s RESET pin is directly connected to D4 via a
1lkohm resistor. If using a 4D Arduino Adaptor Shield, the display module’s
RESET pin is switched by the D4 pin via a transistor.

Let the Display Start Up
The five second — delay below waits for the display module to start up.

//let the display start up

delay (50007 ;

In section 2.5 Power-Up and Reset of the Picaso/Diablo/Goldelox Serial
Command Set Reference Manual, it says:

When the PICASO Display Module comes out of a power-
up or external reset, a sequence of events is executed
internally. The user should wait at least 3 seconds for the
start-up to take place before attempting to

communicate with the module.

Set the Screen Orientation
This is the first command sent to the display module.

Display.gfx ScreenMode (LANDSCAPE R);

It sets the orientation of the display to “reversed landscape”. Refer to
section 5.2.34/5.2.24(GOLDELOX) Screen Mode of the
Picaso/Diablo/Goldelox Serial Command Set Reference Manual for more
information. Note that the function returns the previous screen mode value.

Thus, the user can write:

orientationPrev = Display.gfx ScreenMode (LANDSCAPE R);

Clear the Screen

Diszplay.gfx Cls()://clear the screen

Section 5.2.1 Clear Screen of the Picaso/Diablo/Goldelox Serial Command
Set Reference Manual describes in detail the command for clearing the

screen.

Page 12 of 25

www.4dsystems.com.au

http://www.4dsystems.com.au/product/4D_Workshop_4_IDE/downloads
http://www.4dsystems.com.au/product/4D_Workshop_4_IDE/downloads
http://www.4dsystems.com.au/product/4D_Workshop_4_IDE/downloads
http://www.4dsystems.com.au/product/4D_Workshop_4_IDE/downloads
http://www.4dsystems.com.au/product/4D_Workshop_4_IDE/downloads

APPLICATION NOTES

4D-AN-00092

uSD Card Mount Routine

415D card mount routine
Display.putstr ("Mounting. .. Yvn")
if(! (disk = Display.file_Mount()l])
i
while (! ({disk = Display.file Mounti)))
{

Aiprint a string

Display.putstr("Drive not mounted...™):
delay(200) ;

Display.gfx_Clsi):

delayv(200]) ;

This routine is optional but included in the program for practice. The
program won’t go further unless a uSD card is inserted in the LCD. This
routine can be commented out and won’t affect the final output.

Send a String

| Displavy.putstr ("HELLO TOELDY:™) ;

For more information, refer to section 5.1.3 Put String of the
Picaso/Diablo/Goldelox Serial Command Set Reference Manual. Note that

the function returns the length of the string printed.

Understanding the Arduino Demo Sketch (with Message Logging)

In this section, the Serial Monitor of the Arduino IDE is used to send
messages to the PC. This is an effective method of debugging a serial

program and/or getting acquainted with the Arduino Serial Library. For the
Arduino Uno, the user can use a software serial port only to talk to the
display since the hardware port Serial0 is used exclusively by the Serial
Monitor. The following images show the results for testing the basic demo
sketch files at 9600 bps on three Arduino boards. The display module was a

uLCD-32PTU.
Basic Demo with out message logging
Serial0 Seriall |[Serial2 |Serial3 |Sofware (10, 11)
Uno oK NA MNA MNA OK
Mega oK oK oK oK OK
Due oK OK oK oK NA

Basic Demo with message logging
Serial Monitor [Seriall |Serial2 |Serial3 |Sofware (10, 11)
Uno OK MNA MNA MNA OK
Mega OK oK oK oK oK
Due OK OK OK OK MNA

Enable Message Logging
The line

//enable message logglng
#define LOG MESSAGES

enables message logging. If message logging is enabled, Serial0 is now used
to communicate with the Serial Monitor.

#ifdef LOG MESSAGES
#define HWLOGGING Serial

Page 13 of 25

www.4dsystems.com.au

http://www.4dsystems.com.au/product/4D_Workshop_4_IDE/downloads

APPLICATION NOTES

4D-AN-00092

To disable message logging, simply comment out line 41 of the sketch as
shown below.

//enable message logging
//#define LOG MEEZSAGES

All message-logging-related lines throughout the sketch will now be
disregarded.

Set the Baud Rate
Communication with the Serial Monitor is set at 115200 bps.

#ifdef LOG MESSAGES
HWLOGGING. begin (115200 ;
HWLOGEING, println (F (" nArduine-40D Display Serial
fendif

Make sure that the Serial Monitor is configured properly.

Mo line ending | | 115200 baud *

Displaying Returned Values
Note that when the display module receives the put string command and

parameters, it prints the string and sends back an acknowledgment byte and
two more bytes — the MSB and LSB values of the length of the string just
printed. Thus the function Display.putstr() returns the string length. Here it
is stored in a variable.

stringLength[0] = Display.putstri{"Hsllc Picasolin™);

The Error-handling Routine

vold mycallback {(int ErrCode, unsigned char Errorbyte)

{

#ifdef LOG MESSAGER
const char *ErrordDText[] = {"OEM\OD", "Timecut“W0", "I
HWLOGGING. print (F("Serial 4D Library reports an err
HWLOGGING. print (ErrordDText [Errcode])
HWLOGGEING. print (F{"\n")) ;

1f (ErrCode == Errd4D MNAK)

i
HWLOGGING. print (F ("returned data = ")) ;
HWLOGGING. print (Errorbyte) ;

1

elze
HALOGGING. println{(F (""1) ;

HWLOGGING. println (F ("Program cannot procesd further

while (1) ; // wou can return here, or you can loop

The error-handler above is an improved and complete version of the
mycallback () routine. It uses the arguments passed to it to inform the user
of the exact nature of the error. Take note that aside from the GetAck()
function, there are other functions in the Arduino Serial Library that calls
on the error handler when an error occurs. See the file
“Picaso/Diablo/Goldelox_Serial_4DLib.cpp” for more information.

Page 14 of 25

www.4dsystems.com.au

APPLICATION NOTES

4D-AN-00092

Final Output

ELLO HORLD

Connect the 4D Display Module to the Arduino Host

This section discusses several ways of connecting the display module to the
Arduino host. The user has the option of using a 4D Arduino Adaptor Shield
(there are two versions of this — the old and the new) or jumper wires.

Using the New 4D Arduino Adaptor Shield (Rev 2.00)

Definition of Jumpers and Headers

Jumpers

J2 13

|

E= L LJ L n- .E]H|
06 6:666:666:666. 4¢3,
PES PRT AR pwgr\n oo 02" a1

2 ILJDND T™X RX 5V ARDUIND RESET S5V RX TX ONDRES 3'

‘? Ha ! I ! H1 ? dl
™ 1|

RX u|

4D PROG CABLE/ADAFTOR ! m l 40 DISPLAY

The 5-way cable coming from the display should be connected to H1. When
the Arduino host cannot supply enough power to the display, the display can

Page 15 of 25 www.4dsystems.com.au

APPLICATION NOTES

4D-AN-00092

be powered separately thru H2 (jumper J2 should be configured
accordingly).

J1 is for choosing which pin resets the display — either the RES pin of H2 or
pin D4 of the Arduino host. J2 is for choosing the power supply source for
the display —either the Arduino host or the programming module connected
to H2 (if the Arduino host power supply is inadequate). The middle pin of J3,
RX, goes to the TX pin of the display and must be tapped to the correct RX
pin of the Arduino host. The middle pin of J4, TX, goes to the RX pin of the
display and must be tapped to the correct TX pin of the Arduino host.

Default Jumper Settings
The image on the right column shows the default settings for jumpers J1 to

14,
e Pin D4 of the Arduino host resets the display (J1 shorts pins RES and
AR).
e The Arduino host powers the display (J2 shorts pins PWR and AR).
e The Arduino host talks to the display thru port SerialO.

.
s &

]'\-‘- s
=

1414

Page 16 of 25

www.4dsystems.com.au

APPLICATION NOTES

4D-AN-00092

Default Settings for J3 and J4

current for both the display module and the Arduino host. Refer to your

Jumpers J3 and J4 are configured, by default, to connect RX (TXO of the display module’s datasheet for the specified supply current.
display module) to DO (RX0 of the Arduino) and TX (RXO of the display Using the USB cable (the Arduino host powers the display):

module) to D1 (TX0 of the Arduino). Communication in this case is thru

Serial0 of the Arduino host and COMO of the display module.

Arduino host

RXO0

TXO0

4D Arduino
Adaptor Shield

The Arduino Host Powers the Display

The following are images wherein the display module is powered by the
Arduino host. Note that the power supply must be able to provide enough

Display

module

Page 17 of 25 www.4dsystems.com.au

APPLICATION NOTES

4D-AN-00092

Change the Arduino Host Serial Port

To use the other hardware serial ports of the Mega or Due, remove the
jumper connectors of J3 and J4 and connect the display TX0 and RXO pins to
the desired Arduino serial port TX and RX pins using jumper wires.

Arduino host

RX1, RX2, RX3, or

software serial RX pin

X1, TX2, TX3, or
software serial TX pin

4D Arduino
Adaptor Shield

Display

module

Power the Arduino Host and the Display Separately

If the display requires a higher current to operate (the uLCD-70DT for
instance), it is not advisable to power it off the 5V out of the Arduino host.
To power the display separately from the Arduino board, set J2 as shown

below. Power will then be supplied to the display thru H2.

H2 is for the 4D USB Programming Cable or pUSB-PA5 (power supply
source), and H1 is for the display module. The following image shows how
the Arduino host and the 4D display are connected when they are powered
separately.

Page 18 of 25

www.4dsystems.com.au

APPLICATION NOTES

4D-AN-00092

Complete setup (host and display are powered separately):

1

Note that the display module cannot be programmed thru the uUSB-PAS5 in
this setup since H2 transfers power only. Before programming the display
module, disconnect it first from the Arduino Adaptor Shield. Likewise,
before programming the Arduino host, make sure that it is not connected to
the display module. Do this when the communication is thru Serial0
(Arduino host) and COMO (4D display). Always double check the orientation
of the connections.

Using the Old 4D Arduino Adaptor Shield (Rev 1)

SW3L1SAS

PIRIYS Joidepy ouNply Ok
2102)
@

The old 4D Arduino Adaptor Shield (Rev1) uses digital pin D2 for resetting
the display. The reset routine of the Arduino sketch must be modified
accordingly.

Page 19 of 25 www.4dsystems.com.au

APPLICATION NOTES 4D-AN-00092

Connection Using Jumper Wires

5 BUST GND JGNC

1 EXPMDN HEADER
Hl
ot | . | SPK-
02 . o [SPK+
103 ¢ __12C SCL
04| 3 4 __12C SDA
—_— 10 —= Y
112 =
057 i ¢ AUDIOIO
= BUS6 | ;5 ¢ [AUDENB
BUSS | |, oo _RESET _+3.3V OUT
aum el | ;'I
BUST | 5, 5, __RXO
BUS2 | ¢ 5. [_TXO
BUSL | 57 gg X
BUSD | 5, 3¢ —RAL
IDC HDR 2x15

Note that the display here is powered off the 5V out of the Arduino board.
Pin D4 of the host will also reset the display (logic of the reset routine must
be inverted). Connect the 5V and GND pins of the display to an external 5V
power supply source if a separate supply is needed. The reset pin, RES, of
the display can also be connected to another GPIO pin of the Arduino host

and the sketch can be modified accordingly.

Page 20 of 25 www.4dsystems.com.au

APPLICATION NOTES 4D-AN-00092

Changing the Serial Port of the Genie Program

A ViSi-Genie program uses the serial port COMO by default. This is also the
serial port through which the display is programmed by Workshop. The
datasheet for the uLCD-32PTU, for example, shows the H1 I/0 Expansion
header and the programming header.

microLCD .

PICASO Platform Display

As the reader may have already perceived, the TX and RX pins on the
programming header are the same pins as TX0 and RX0 on the H1 I/O
expansion header. In Workshop it is possible to change the serial port being
used by a ViSi-Genie program. Instructions for doing this are as follows.

Under the File menu, select Options then select the Genie tab.

Page 21 of 25 www.4dsystems.com.au

APPLICATION NOTES

4D-AN-00092

New Compiler Designer Editor Environment | Genie | Serial Updates

Mote: 200,000 baud is a reliable baud ra
Dpen D 2L ¥ | to accumulated inherent baud rate error
I 56,000 are not reliable.

Default Sound Buffer | 1024 W

= Recent
j - Comms Port Diablo com1 Pins
J @ u} RXFin PA1l1 W
= (1 TXFin |PA13 v

B
X Save As
Maximum 5tring Length ‘ Each addition byte of string length uses

-'_|:| Zip Project

X cancel

For Picaso displays there are only two available serial ports — COMO and
COM1. To use COM1, click on the button next to it then click OK.

Comms Port Diablo com1 Fins
] RXPin PA11 w
OF¢ TXPin |PA13 v

o |

Compile and download the program to the display. All subsequent ViSi-
Genie programs will now use COML1. Also, the TX and RX pins of the host
shall now be connected to the RX and TX pins of COM1 instead of COMO.

x Cancel

The Diablo16 processor has four serial ports — COM0O, COM1, COM2, and
COM3. The TX and RX pins of COMO are fixed and are used for programming
the processor. Again, COMO is also the default serial port used by a ViSi-
Genie program. The TX and RX pins for COM1, COM2, and COM3, on the
other hand, are ‘mappable’ —that is, they can be configured to be ‘mapped’
out to any (but not all) of the GPIO pins. The table below shows the GPIO
pins that can be used as TX and RX pins for COM1, COM2, and COM3. This
table is taken from the Diablo16 datasheet.

Page 22 of 25

www.4dsystems.com.au

http://www.4dsystems.com.au/product/DIABLO16_OGM/

APPLICATION NOTES

4D-AN-00092

DIABLO16 Serial TTL Comm Port

Configuration Options
TX1 RX1 TX2 RX2 TX3 RX3

NSNS N TSN N ES CN LN ENEN
N ENENINENENINEN N ENENENENEN
NENENINENININEN N EN N ENENEN

Workshop, however, only provides the option of using COM1 as an
alternative to COMO. To use the GPIO pins PA13 and PA12 as RX and TX pins
respectively, specify them under Diablo com1 Pins then click OK.

Comms Port Diablo com 1 Pins
D i) RXPin [PAL3 w

(o1 TEPin |PA12 W

" OK X cancel

Compile and download the program to the display. All subsequent ViSi-
Genie programs with a Diablo16 target display will now use COM1 with
the specified TX and RX pins. Also, the TX and RX pins of the host shall now
be connected to the specified RX and TX pins of COM1. If using a uLCD-
35DT for example,

Consult the datasheet of your display for more information.

Changing the Maximum String Length

The host can dynamically write to the strings object of a ViSi-Genie program.
The default maximum length of a character array that can be dynamically
written to a strings object is 75 characters (excluding the overhead bytes).
Worskhop provides an option for increasing this limit.

Under the File menu, select Options then select the Genie tab. Here the
maximum length is set to 200 characters. Click OK.

Page 23 of 25

www.4dsystems.com.au

APPLICATION NOTES 4D-AN-00092

Compiler Designer Editor Environment | Genie | Serial Updates

Mote: 200,000 baud is a reliable baud ra
to accumulated inherent baud rate error
56,000 are not relisble.

Default Sound Buffer

Comms Port Diablo com 1 Pins
oo R v
ST

Maximum String Length Each addition byte of string length uses

Default Baud Rate 9500 W

Compile and download the program to the display. All subsequent ViSi-

Genie programs will now have this configuration.

Page 24 of 25 www.4dsystems.com.au

APPLICATION NOTES 4D-AN-00092

Proprietary Information

The information contained in this document is the property of 4D Systems Pty. Ltd. and may be the subject of patents pending or granted, and must not be

copied or disclosed without prior written permission.

4D Systems endeavours to ensure that the information in this document is correct and fairly stated but does not accept liability for any error or omission. The
development of 4D Systems products and services is continuous and published information may not be up to date. It is important to check the current position
with 4D Systems.

All trademarks belong to their respective owners and are recognised and acknowledged.

Disclaimer of Warranties & Limitation of Liability

4D Systems makes no warranty, either expresses or implied with respect to any product, and specifically disclaims all other warranties, including, without
limitation, warranties for merchantability, non-infringement and fitness for any particular purpose.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates.
It is your responsibility to ensure that your application meets with your specifications.

In no event shall 4D Systems be liable to the buyer or to any third party for any indirect, incidental, special, consequential, punitive or exemplary damages
(including without limitation lost profits, lost savings, or loss of business opportunity) arising out of or relating to any product or service provided or to be
provided by 4D Systems, or the use or inability to use the same, even if 4D Systems has been advised of the possibility of such damages.

4D Systems products are not fault tolerant nor designed, manufactured or intended for use or resale as on line control equipment in hazardous environments
requiring fail — safe performance, such as in the operation of nuclear facilities, aircraft navigation or communication systems, air traffic control, direct life
support machines or weapons systems in which the failure of the product could lead directly to death, personal injury or severe physical or environmental
damage (‘High Risk Activities’). 4D Systems and its suppliers specifically disclaim any expressed or implied warranty of fitness for High Risk Activities.

Use of 4D Systems’ products and devices in 'High Risk Activities' and in any other application is entirely at the buyer’s risk, and the buyer agrees to defend,
indemnify and hold harmless 4D Systems from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or
otherwise, under any 4D Systems intellectual property rights.

Page 25 of 25 www.4dsystems.com.au

	Description
	Content
	Application Overview
	Setup Procedures
	Program the Arduino Host
	Install the Library
	Modify the Library for the Arduino Due
	Open the Attached Arduino Sketch Files
	Understanding the Arduino Demo Sketch (w/o Message Logging)
	Include the Library Files
	Define the Serial Port to be Used
	The Acknowledgment Byte
	The Error-handling Routine
	Set the Timeout Limit
	Set the Baud Rate
	Reset the Arduino Host and the Display
	Let the Display Start Up
	Set the Screen Orientation
	Clear the Screen
	uSD Card Mount Routine
	Send a String

	Understanding the Arduino Demo Sketch (with Message Logging)
	Enable Message Logging
	Set the Baud Rate
	Displaying Returned Values
	The Error-handling Routine
	Final Output

	Connect the 4D Display Module to the Arduino Host
	Using the New 4D Arduino Adaptor Shield (Rev 2.00)
	Definition of Jumpers and Headers
	Default Jumper Settings
	Change the Arduino Host Serial Port
	Power the Arduino Host and the Display Separately

	Using the Old 4D Arduino Adaptor Shield (Rev 1)
	Connection Using Jumper Wires
	Changing the Serial Port of the Genie Program
	Changing the Maximum String Length

	Proprietary Information
	Disclaimer of Warranties & Limitation of Liability

