
A
P

P
L

IC
A

T
IO

N
 N

O
T

E
S

ViSi-Genie Generated Header Files

DOCUMENT DATE: 24th MAY 2019

DOCUMENT REVISION: 1.1

W W W . 4 D S Y S T E M S . C O M . A U

APPLICATION NOTES 4D-AN-00190

Page 2 of 26 www.4dsystems.com.au

 Description

This application note shows how to configure Workshop to generate a

header file containing a list of defined constants for the objects used in a

ViSi-Genie project. For each object, the constant name can be the object

name or the alias. The constant value is a two-byte hexadecimal value, the

high byte and low byte of which are the object ID and the object index,

respectively. Below is a screenshot image of the project used in this

application note.

Form0 Form1

Before getting started, the following are required:

 Any of the following 4D Picaso and gen4 Picaso display modules:

gen4-uLCD-24PT gen4-uLCD-28PT gen4-uLCD-32PT

uLCD-24PTU uLCD-32PTU uVGA-III

and other superseded modules which support the ViSi Genie

environment

 The target module can also be a Diablo16 display

gen4-uLCD-24D series gen4-uLCD-28D series gen4-uLCD-32D series
gen4-uLCD-35D series gen4-uLCD-43D series gen4-uLCD-50D series

gen4-uLCD-70D series
uLCD-35DT uLCD-43D series uLCD-70DT

Visit www.4dsystems.com.au/products to see the latest display

module products that use the Diablo16 processor. The display

module used in this application note is the uLCD-32PTU, which is a

Picaso display. This application note is applicable to Diablo16 display

modules as well.

 4D Programming Cable / uUSB-PA5/uUSB-PA5-II

for non-gen4 displays(uLCD-xxx)

 4D Programming Cable & gen4-PA, / gen4-IB / 4D-UPA

for gen4 displays (gen4-uLCD-xxx)

 micro-SD (µSD) memory card

 Workshop 4 IDE (installed according to the installation document)

https://www.4dsystems.com.au/product/gen4_uLCD_24PT/
https://www.4dsystems.com.au/product/gen4_uLCD_28PT/
https://www.4dsystems.com.au/product/gen4_uLCD_32PT/
http://www.4dsystems.com.au/product/1/7/4D_Intelligent_Display_Modules/uLCD_24PTU/
http://www.4dsystems.com.au/product/1/9/4D_Intelligent_Display_Modules/uLCD_32PTU/
http://www.4dsystems.com.au/product/1/124/4D_Intelligent_Display_Modules/uVGA_III/
https://www.4dsystems.com.au/product/gen4-uLCD-24D/
https://www.4dsystems.com.au/product/gen4-uLCD-28D/
https://www.4dsystems.com.au/product/gen4-uLCD-32D/
https://www.4dsystems.com.au/product/gen4-uLCD-35D/
https://www.4dsystems.com.au/product/gen4-uLCD-43D/
https://www.4dsystems.com.au/product/gen4-uLCD-50D/
https://www.4dsystems.com.au/product/gen4-uLCD-70D/
http://www.4dsystems.com.au/product/uLCD_35DT/
http://www.4dsystems.com.au/product/uLCD_43D/
http://www.4dsystems.com.au/product/uLCD_70DT/
http://www.4dsystems.com.au/products
http://www.4dsystems.com.au/product/17/114/Accessories/4D-Programming-Cable/
https://www.4dsystems.com.au/product/uUSB-PA5/
http://www.4dsystems.com.au/product/17/114/Accessories/4D-Programming-Cable/
https://www.4dsystems.com.au/product/gen4_PA/
https://www.4dsystems.com.au/productpages/gen4-IB/downloads/gen4-IB_datasheet_R_1_2.pdf
https://www.4dsystems.com.au/product/4D_UPA/
https://www.4dsystems.com.au/product/uSD_4GB_Industrial/
http://www.4dsystems.com.au/product/10/120/Development/4D_Workshop_4_IDE/

APPLICATION NOTES 4D-AN-00190

Page 3 of 26 www.4dsystems.com.au

 When downloading an application note, a list of recommended

application notes is shown. It is assumed that the user has read or

has a working knowledge of the topics presented in these

recommended application notes.

 Content

Description.. 2

Content ... 3

Application Overview ... 4

Setup Procedure ... 5

Create a New Project .. 5

Create a New Project .. 5

Design the Project .. 5

Add Four Winbutton Objects to Form0 .. 5

Configure the OnChanged Event of the Winbutton Objects 5

Add Four User LED Objects to Form0 ... 7

Add a User Button Object to Form0... 8

Configure the OnChanged Event of Userbutton0 8

Configure the OnActivate Event of Form0 8

Add a New Form to the Project ... 8

Add Three 4D Button Objects to Form1 9

Configure the OnChanged Event of the 4D Button Objects 9

Add Three User LED Objects to Form1 10

Add a User Button Object to Form1... 11

Configure the OnChanged Event of Userbutton1 11

Configure the OnActivate Event of Form1 11

Model .. 12

WRITE_MAGIC_BYTES 12

APPLICATION NOTES 4D-AN-00190

Page 4 of 26 www.4dsystems.com.au

REPORT_EVENT 13

Configure Workshop to Generate a Header File 13

Build and Upload the Project ... 14

Check the Generated Header File .. 15

Header File Filename Format .. 15

Open the Header File .. 15

Replace the Object Name with the Alias 16

The Genie Index Element .. 17

Identify the Messages .. 18

Use the GTX Tool to Analyse the Messages 18

Receive a Message from the Display Module 19

REPORT_EVENT Message from a Winbutton Object 19

REPORT_EVENT Message from a Form Object 20

REPORT_EVENT Message from a 4D Button Object - On 21

REPORT_EVENT Message from a 4D Button Object - Off 21

Send a Message to the Display Module 22

Send a WRITE_OBJ Message to a User LED Object 22

Send a WRITE_OBJ Message to a Form Object 24

Proprietary Information ... 26

Disclaimer of Warranties & Limitation of Liability 26

 Application Overview

When creating a ViSi-Genie project, objects have a standard name and an

alias name. The standard name and the alias name are identical by default.

The user can modify only the alias name of an object.

When writing the source code for the host program, it would be helpful for

the user to be able to import the standard names or alias names of all

objects, especially if the ViSi-Genie project is large, i.e. it contains several

forms and objects. The user can then make use of the object names or

aliases when writing the source code for the host program. This application

note shows how this is done.

The ViSi-Genie project attached to this application note consists of two

forms. The first form has four winbutton objects, four user LED objects, and

a user button object. The second form has three 4D button objects, three

user LED objects, and a user button object. Several of these objects are given

a unique alias. It is then shown how Workshop is configured to generate a

header file containing defined constants for all of the objects.

The GTX tool is then used to analyse the syntax of the messages coming from

and sent to the display module. The message for an object is then related to

the constant defined for it in the header file. The use of the defined constant

(and the header file) is then illustrated using pseudo codes.

APPLICATION NOTES 4D-AN-00190

Page 5 of 26 www.4dsystems.com.au

 Setup Procedure

For instructions on how to launch Workshop 4, how to open a ViSi-Genie

project, and how to change the target display, kindly refer to the section

“Setup Procedure” of the application note:

ViSi Genie Getting Started – First Project for Picaso Displays (for Picaso)

or

ViSi Genie Getting Started – First Project for Diablo16 Displays (for

Diablo16).

 Create a New Project

Create a New Project

For instructions on how to create a new ViSi-Genie project, please refer to

the section “Create a New Project” of the application note

ViSi Genie Getting Started – First Project for Picaso Displays (for Picaso)

or

ViSi Genie Getting Started – First Project for Diablo16 Displays (for

Diablo16)

 Design the Project

Add Four Winbutton Objects to Form0

Four winbutton objects are added to Form0. These are Winbutton0,

Winbutton1, Winbutton2, and Winbutton3. The alias name for a button is

appended to the object name.

Configure the OnChanged Event of the Winbutton Objects

Each winbutton object is configured to send a message to the serial port

when touched.

http://www.4dsystems.com.au/appnote/4D-AN-00001/
http://www.4dsystems.com.au/appnote/4D-AN-00106/
http://www.4dsystems.com.au/appnote/4D-AN-00001/
http://www.4dsystems.com.au/appnote/4D-AN-00106/

APPLICATION NOTES 4D-AN-00190

Page 6 of 26 www.4dsystems.com.au

To know more about winbutton objects, their properties, and how they are

added to a project, refer to the application note

ViSi-Genie Advanced Buttons

http://www.4dsystems.com.au/appnote/4D-AN-00004/

APPLICATION NOTES 4D-AN-00190

Page 7 of 26 www.4dsystems.com.au

Add Four User LED Objects to Form0

Four user LED objects are added to Form0. These are Userled0, Userled1,

Userled2, and Userled3. The alias name for a user LED object is appended

to the object name.

To know more about user LED objects, their properties, and how they are

added to a project, refer to the application note

ViSi-Genie Digital Displays

http://www.4dsystems.com.au/appnote/4D-AN-00012/

APPLICATION NOTES 4D-AN-00190

Page 8 of 26 www.4dsystems.com.au

Add a User Button Object to Form0

A user button object is added to Form0. This is Userbutton0.

Configure the OnChanged Event of Userbutton0

Use Userbutton0 for navigating to Form1.

To know more about user button objects, their properties, and how they are

added to a project, refer to the application note

 ViSi-Genie User Button

Configure the OnActivate Event of Form0

Make Form0 send a message to the serial port when it is activated.

Add a New Form to the Project

This is Form1.

http://www.4dsystems.com.au/appnote/4D-AN-00030/

APPLICATION NOTES 4D-AN-00190

Page 9 of 26 www.4dsystems.com.au

Add Three 4D Button Objects to Form1

Three 4D button objects are added to Form0. These are 4Dbutton0,

4Dbutton1, and 4Dbutton2. The alias name for a 4D button object is

appended to the object name.

Configure the OnChanged Event of the 4D Button Objects

Each 4D button object is configured to send a message to the serial port

when touched.

APPLICATION NOTES 4D-AN-00190

Page 10 of 26 www.4dsystems.com.au

To know more about the 4D button objects, their properties, and how they

are added to a project, refer to the application note

 ViSi-Genie 4D Buttons

Add Three User LED Objects to Form1

Three user LED objects are added to Form1. These are Userled4, Userled5,

and Userled6. The alias name for a user LED object is appended to the object

name.

http://www.4dsystems.com.au/appnote/4D-AN-00032/

APPLICATION NOTES 4D-AN-00190

Page 11 of 26 www.4dsystems.com.au

Add a User Button Object to Form1

A user button object is added to Form0. This is Userbutton1.

Configure the OnChanged Event of Userbutton1

Use Userbutton1 for navigating to Form0.

To know more about user button objects, their properties, and how they are

added to a project, refer to the application note

 ViSi-Genie User Button

Configure the OnActivate Event of Form1

Make Form1 send a message to the serial port when it is activated.

http://www.4dsystems.com.au/appnote/4D-AN-00030/

APPLICATION NOTES 4D-AN-00190

Page 12 of 26 www.4dsystems.com.au

Model

Below is a model for an application wherein the host interacts with the

display module through the use of WRITE_OBJ and REPORT_EVENT

messages.

The WRITE_OBJ and REPORT_EVENT messages or commands are two

complementary messages that are defined in the ViSi-Genie

communications protocol.

WRITE_MAGIC_BYTES

The standard format of WRITE_OBJ message, as defined in section 2.1.2

(Command and Parameters Table) of the ViSi-Genie Reference Manual is:

Command Code Para-
meter
1

Para-
meter 2

Para-
meter 3

Para-
meter 4

Para-
meter N

Checksum

WRITE_OBJ 0x01 Object
ID

Object
Index

Value
(msb)

Value
(lsb)

- Checksum

The section “2.1.3.2 Write Object Value Message” further says:

Description

The host issues the Write Object command message when it wants to
change the status of an individual object item. For example, Meter 3 value
needs to be set to 50.

The display module evaluates

the REPORT_EVENT message to

determine the source. When writing the

source code for the host program, the

header file generated by Workshop can

be utilized. After the object that initiated

the event is determined, the host may

send a WRITE_OBJ message.

Host
In the event of a touch activity on any of the

input objects on the screen, the display sends

a REPORT_EVENT message to the host. This

message contains information about the

object that initiated the report event.

Display

Module

The display

module waits for any

touch activity on the

input objects on the

screen.

2

1

3

APPLICATION NOTES 4D-AN-00190

Page 13 of 26 www.4dsystems.com.au

REPORT_EVENT

The standard format of a REPORT_EVENT message, as defined in section

2.1.2 (Command and Parameters Table) of the ViSi-Genie Reference

Manual is:

Command Code Para-
meter
1

Para-
meter 2

Para-
meter 3

Para-
meter 4

Para-
meter N

Checksum

REPORT_
EVENT

0x07 Object
ID

Object
Index

Value
(msb)

Value
(lsb)

- Checksum

The section “2.1.3.7 Report Event Message” further says:

Description

When designing the Genie display application in Workshop, each Object
can be configured to report its status change without the host having to
poll it (see Read Object Status message). If the object’s ‘Event Handler’ is
set to ‘Report Event’ in the ‘Event’ tab, the display will transmit the
object’s status upon any change. For example, Slider 3 object was set from
0 to 50 by the user.

Configure Workshop to Generate a Header File

Click on the button “Set C Defaults”.

1

2

3

4

APPLICATION NOTES 4D-AN-00190

Page 14 of 26 www.4dsystems.com.au

Click on the tick box indicated below.

 Build and Upload the Project

For instructions on how to build and upload a ViSi-Genie project to the

target display, please refer to the section “Build and Upload the Project” of

the application note

ViSi Genie Getting Started – First Project for Picaso Displays (for Picaso)

or

ViSi Genie Getting Started – First Project for Diablo16 Displays (for

Diablo16).

The uLCD-32PTU and/or the uLCD-35DT display modules are commonly

used as examples, but the procedure is the same for other displays.

5

http://www.4dsystems.com.au/appnote/4D-AN-00001/
http://www.4dsystems.com.au/appnote/4D-AN-00106/

APPLICATION NOTES 4D-AN-00190

Page 15 of 26 www.4dsystems.com.au

 Check the Generated Header File

Header File Filename Format

Go to the folder where the project files are located. For example, the files

for this project are located in the folder shown below. The generated header

file is

<project name> + “Const.h”

where “Const.h” is the default suffix set in Workshop.

Open the Header File

APPLICATION NOTES 4D-AN-00190

Page 16 of 26 www.4dsystems.com.au

Note that the syntax follows that which was set in the “Template” field. We

analyse the second item in the list.

Note how the elements enclosed by a pair of percentage symbols are

replaced with the actual values.

Replace the Object Name with the Alias

Now go back to Workshop and change the value of the template field to that

shown below.

Note that the available elements are listed below the Generated Files

window. Click OK to make the new setting/s effective.

Compile and build the project again. The generated file should now be

updated accordingly.

APPLICATION NOTES 4D-AN-00190

Page 17 of 26 www.4dsystems.com.au

The Genie Index Element

The Genie index element in the template field will be replaced with a 16-bit

hexadecimal value. The high byte of this value is the Genie object ID. The

low byte is the Genie object index. To illustrate using the second item in the

header file:

0x 06 00

Object ID 0x06

Object Index 0x00

The object ID for a winbutton object is 0x06. The section “3.3. Object

Summary Table” of the ViSi Genie Reference Manual lists all Genie objects and

their IDs. The index “0x00” means that ForwardSwitch is the first winbutton

object of the project.

http://www.4dsystems.com.au/product/4D_Workshop_4_IDE/downloads

APPLICATION NOTES 4D-AN-00190

Page 18 of 26 www.4dsystems.com.au

 Identify the Messages

The display module is going to send and receive messages to and from an

external host. This section explains to the user how to interpret these

messages. An understanding of this section is necessary for users who

intend to interface the display to a host. The ViSi Genie Reference Manual is

recommended for advanced users.

Use the GTX Tool to Analyse the Messages

Using the GTX or Genie Test eXecutor tool is one option to get the messages

sent by the display to the host. Here the PC will be the host. The GTX tool is

a part of the Workshop 4 IDE. It allows the user to receive, observe, and send

messages from and to the display module. It is an essential debugging tool.

Under the Tools menu click on the GTX tool button.

The Genie Test eXecutor window appears.

http://www.4dsystems.com.au/product/4D_Workshop_4_IDE/downloads

APPLICATION NOTES 4D-AN-00190

Page 19 of 26 www.4dsystems.com.au

Receive a Message from the Display Module

REPORT_EVENT Message from a Winbutton Object

On the display module, press Winbutton0. The display module will send a

REPORT_EVENT message to the PC.

The format of this message is:

Command Code Para-
meter
1

Para-
meter 2

Para-
meter 3

Para-
meter 4

Para-
meter N

Checksum

REPORT_
EVENT

0x07 Object
ID

Object
Index

Value
(msb)

Value
(lsb)

- Checksum

Compare the Genie index element value of Winbutton0 in the header file to

the received message.

When writing the source code for a program that will run on the host, the

user can include the header file and used the defined constants when

evaluating REPORT_EVENT messages received from the display module. To

illustrate using a pseudo C code:
#include <example1Const.h>

…

void eventHandler (uint8_t cmd, uint8_t id,

uint8_t index, uint16_t value){

 if(cmd == 0x07){ // if a REPORT_EVENT message

 if(id == (ForwardSwitch >> 8)){//if a winbutton

 if(index == ForwardSwitch){//if Winbutton0

 //do something here

 }

 }

 }

}

The above function gets called when a message is received from the display

module. Assume that the calling function parses the elements of the

message received from the serial port and passes them as arguments to

eventHandler(…) accordingly.

Object ID for a

winbutton object
A momentary buttons object

sends a “0x0000” when it is

pressed-and-released.
Winbutton0

APPLICATION NOTES 4D-AN-00190

Page 20 of 26 www.4dsystems.com.au

REPORT_EVENT Message from a Form Object

On the display module, press Userbutton0. The program on the display

module will navigate to the second form and will send a REPORT_EVENT

message to the PC.

The format of this message is:

Command Code Para-
meter
1

Para-
meter 2

Para-
meter 3

Para-
meter 4

Para-
meter N

Checksum

REPORT_
EVENT

0x07 Object
ID

Object
Index

Value
(msb)

Value
(lsb)

- Checksum

Compare the Genie index element value of Form1 in the header file to the

received message.

Example of usage through a pseudo C code:

#include <example1Const.h>

…

void eventHandler (uint8_t cmd, uint8_t id,

uint8_t index, uint16_t value){

 if(cmd == 0x07){ // if a REPORT_EVENT message

 if(id == (Form1 >> 8)){//if a form object

 if(index == Form1){//if Form1

 //do something here

 }

 }

 }

}

Object ID for a

form object
A form object sends a “0x0000”

when it has been activated.

Form1

APPLICATION NOTES 4D-AN-00190

Page 21 of 26 www.4dsystems.com.au

REPORT_EVENT Message from a 4D Button Object - On

On Form1 of the display module, press 4Dbutton0. The program on the

display module will send a REPORT_EVENT message to the PC.

The format of this message is:

Command Code Para-
meter
1

Para-
meter 2

Para-
meter 3

Para-
meter 4

Para-
meter N

Checksum

REPORT_
EVENT

0x07 Object
ID

Object
Index

Value
(msb)

Value
(lsb)

- Checksum

REPORT_EVENT Message from a 4D Button Object - Off

On Form1 of the display module, press 4Dbutton0 again to turn it off. The

program on the display module will send a REPORT_EVENT message to the

PC.

The format of this message is:

Command Code Para-
meter
1

Para-
meter 2

Para-
meter 3

Para-
meter 4

Para-
meter N

Checksum

REPORT_
EVENT

0x07 Object
ID

Object
Index

Value
(msb)

Value
(lsb)

- Checksum

Object ID for a 4D

button object
A 4D button object sends a

“0x0001” when it is turned on.

4Dbutton0

Object ID for a 4D

button object
A 4D button object sends a

“0x0000” when it is turned off.

4Dbutton0

APPLICATION NOTES 4D-AN-00190

Page 22 of 26 www.4dsystems.com.au

Compare the Genie index element value of 4Dbutton0 in the header file to

the received message.

Example of usage through a pseudo C code:

#include <example1Const.h>

…

void eventHandler (uint8_t cmd, uint8_t id,

uint8_t index, uint16_t value){

 if(cmd == 0x07){ // if a REPORT_EVENT message

 if(id == (FrontSwitch >> 8)){//if a 4D button

 if(index == FrontSwitch){//if 4Dbutton0

 //do something here

 }

 else if(index == RearSwitch){//if 4Dbutton2

 //do something here

 }

 //set other conditions here

 }

 }

}

Send a Message to the Display Module

Send a WRITE_OBJ Message to a User LED Object

On the GTX window, click on the green circle for Userled4.

Click on the “Set” button below the green circle.

1

2

APPLICATION NOTES 4D-AN-00190

Page 23 of 26 www.4dsystems.com.au

The GTX tool sends a WRITE_OBJ message to the display module. Userled4

on the display module should now turn on.

The format of this message is:

Command Code Para-
meter
1

Para-
meter 2

Para-
meter 3

Para-
meter 4

Para-
meter N

Checksum

WRITE_OBJ 0x01 Object
ID

Object
Index

Value
(msb)

Value
(lsb)

- Checksum

The display module sends back an ACK (acknowledgment) byte to the GTX

tool.

Compare the Genie index element value of Userled4 in the header file to the

received message.

When writing the source code for a program that will run on the host, the

user can include the header file and used the defined constants when

evaluating REPORT_EVENT messages received from the display module. To

illustrate using a pseudo C code:
void writeToDisplay(uint8_t cmd, uint8_t id,

uint8_t index, uint16_t value);

Above is a prototype for a function that sends a WRITE_OBJ message to the

display. Assume that it works and that the calling function just needs to

specify the parameters. To turn on Userled4, we could write:
#include <example1Const.h>

…

writeToDisplay(0x01, FrontLight >> 8, FrontLight,

0x0001);

To turn off Userled4, we could write:
#include <example1Const.h>

…

writeToDisplay(0x01, FrontLight >> 8, FrontLight,

0x0000);

Object ID for a

user LED object
The host writes a “0x0001” to a

user LED object to turn it on.

Userled4

APPLICATION NOTES 4D-AN-00190

Page 24 of 26 www.4dsystems.com.au

Send a WRITE_OBJ Message to a Form Object

On the GTX window, click on the button “Form0” as indicated below.

The GTX tool sends a WRITE_OBJ message to the display module. The

program on the display module should now navigate to Form0.

The format of this message is:

Command Code Para-
meter
1

Para-
meter 2

Para-
meter 3

Para-
meter 4

Para-
meter N

Checksum

WRITE_OBJ 0x01 Object
ID

Object
Index

Value
(msb)

Value
(lsb)

- Checksum

The display module sends back an ACK (acknowledgment) byte to the GTX

tool.

Object ID for a

form object
The host writes a “0x0000” or

any value to a form to activate

it.

Form0

APPLICATION NOTES 4D-AN-00190

Page 25 of 26 www.4dsystems.com.au

Compare the Genie index element value of Userled4 in the header file to the

received message.

Below are examples of usage through a pseudo C code.

To navigate to Form0:

#include <example1Const.h>

…

writeToDisplay(0x01, Form0 >> 8, Form0, 0x0000);

To navigate to Form1:

#include <example1Const.h>

…

writeToDisplay(0x01, Form1 >> 8, Form1, 0x0000);

APPLICATION NOTES 4D-AN-00190

Page 26 of 26 www.4dsystems.com.au

 Proprietary Information

The information contained in this document is the property of 4D Systems Pty. Ltd. and may be the subject of patents pending or granted, and must not be

copied or disclosed without prior written permission.

4D Systems endeavours to ensure that the information in this document is correct and fairly stated but does not accept liability for any error or omission. The

development of 4D Systems products and services is continuous and published information may not be up to date. It is important to check the current position

with 4D Systems.

All trademarks belong to their respective owners and are recognised and acknowledged.

 Disclaimer of Warranties & Limitation of Liability

4D Systems makes no warranty, either expresses or implied with respect to any product, and specifically disclaims all other warranties, including, without

limitation, warranties for merchantability, non-infringement and fitness for any particular purpose.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates.

It is your responsibility to ensure that your application meets with your specifications.

In no event shall 4D Systems be liable to the buyer or to any third party for any indirect, incidental, special, consequential, punitive or exemplary damages

(including without limitation lost profits, lost savings, or loss of business opportunity) arising out of or relating to any product or service provided or to be

provided by 4D Systems, or the use or inability to use the same, even if 4D Systems has been advised of the possibility of such damages.

4D Systems products are not fault tolerant nor designed, manufactured or intended for use or resale as on line control equipment in hazardous environments

requiring fail – safe performance, such as in the operation of nuclear facilities, aircraft navigation or communication systems, air traffic control, direct life

support machines or weapons systems in which the failure of the product could lead directly to death, personal injury or severe physical or environmental

damage (‘High Risk Activities’). 4D Systems and its suppliers specifically disclaim any expressed or implied warranty of fitness for High Risk Activities.

Use of 4D Systems’ products and devices in 'High Risk Activities' and in any other application is entirely at the buyer’s risk, and the buyer agrees to defend,

indemnify and hold harmless 4D Systems from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or

otherwise, under any 4D Systems intellectual property rights.

