@4 D SYSTEMS

Designer or ViSi 4DGL Strings
Print Formats - the Long
Decimal Format Specifiers

DOCUMENT DATE: 22 April 2019
DOCUMENT REVISION: 11

>
o
o
r
@
>
-
O
Z
Z
O
—)
rm
7

WWW.4DSYSTEMS.COM.AU

APPLICATION NOTES

4D-AN-00196

There are four decimal format specifiers:

Specifier Data to be displayed

%d Signed decimal

%u Unsigned decimal

%ld Long signed decimal
%lu Long unsigned decimal

This application note discusses how the long signed decimal and long
unsigned decimal format specifiers are used with the str_Printf(...) function.
This application note is intended for use in the Workshop 4 — Designer
environment. The 4DGL code of the Designer project can be copied and
pasted to an empty ViSi project and it will compile normally. The code can
also be integrated to that of an existing ViSi project.

Before getting started, the following are required:
e Any of the following 4D Picaso display modules:

uLCD-24PTU
gen4-uLCD-24PT

uLCD-28PTU
gen4-uLCD-28PT

uVGA-III
gen4-uLCD-32PT

and other superseded modules which support the Designer
and/ or ViSi environments.

e The target module can also be a Diablo16 display
gen4-uLCD-24D

gen4-ulLCD-28D gen4-ulLCD-32D

Series Series Series
gen4-ulLCD-35D gen4-ulLCD-43D gen4-ulLCD-50D
Series Series Series

gen4-uLCD-70D
Series
uLCD-35DT uLCD-43D Series uLCD-70DT

Visit www.4dsystems.com.au/products to see the latest display

module products that use the Diablo16 processor.

e 4D Programming Cable / uUSB-PA5/uUSB-PAS-II
for non-gen4 displays (ULCD-xxx)

e 4D Programming Cable & gen4-IB / gen4-PA / 4D-UPA,
for gen-4 displays (gen4-uLCD-xxx)

e micro-SD (uSD) memory card

e Workshop 4 IDE (installed according to the installation document)

Page 2 of 11

www.4dsystems.com.au

https://www.4dsystems.com.au/product/uLCD_24PTU/
https://www.4dsystems.com.au/product/uLCD_28PTU/
https://www.4dsystems.com.au/product/uVGA_III/
https://www.4dsystems.com.au/product/gen4_uLCD_24PT/
https://www.4dsystems.com.au/product/gen4_uLCD_28PT/
https://www.4dsystems.com.au/product/gen4_uLCD_32PT/
https://www.4dsystems.com.au/product/gen4_uLCD_24D/
https://www.4dsystems.com.au/product/gen4_uLCD_24D/
https://www.4dsystems.com.au/product/gen4_uLCD_28D/
https://www.4dsystems.com.au/product/gen4_uLCD_28D/
https://www.4dsystems.com.au/product/gen4_uLCD_32D/
https://www.4dsystems.com.au/product/gen4_uLCD_32D/
https://www.4dsystems.com.au/product/gen4_uLCD_35D/
https://www.4dsystems.com.au/product/gen4_uLCD_35D/
https://www.4dsystems.com.au/product/gen4_uLCD_43D/
https://www.4dsystems.com.au/product/gen4_uLCD_43D/
https://www.4dsystems.com.au/product/gen4_uLCD_50D/
https://www.4dsystems.com.au/product/gen4_uLCD_50D/
https://www.4dsystems.com.au/product/gen4_uLCD_70D/
https://www.4dsystems.com.au/product/gen4_uLCD_70D/
https://www.4dsystems.com.au/product/uLCD_35DT/
https://www.4dsystems.com.au/product/uLCD_43D/
https://www.4dsystems.com.au/product/uLCD_70DT/
http://www.4dsystems.com.au/products
https://www.4dsystems.com.au/product/4D_Programming_Cable/
https://www.4dsystems.com.au/product/uUSB_PA5/
https://www.4dsystems.com.au/product/4D_Programming_Cable/
https://www.4dsystems.com.au/productpages/gen4-IB/downloads/gen4-IB_datasheet_R_1_2.pdf
https://www.4dsystems.com.au/product/gen4_PA/
https://www.4dsystems.com.au/product/4D_UPA/
https://www.4dsystems.com.au/product/uSD_4GB_Industrial/
https://www.4dsystems.com.au/product/4D_Workshop_4_IDE/

APPLICATION NOTES 4D-AN-00196

e When downloading an application note, a list of recommended Content

application notes is shown. It is assumed that the user has read or

has a working knowledge of the topics presented in these Description
recommended application notes. Content

Application Overview
Setup Procedure
Create a New Project
Design the Project
The Format Specifier “%ld”
The Width and Zero Flag Sub-specifiers
The Width Sub-specifier
The Zero Flag Sub-specifier
Printing Negative Numbers
Print a Negative Long Decimal Number

Print a Long Unsigned Decimal Number

© W W W N o o n uni & & & W N

Dynamic Construction of the Format Specifier

[y
o

Run the Program

[y
[N

Proprietary Information

[y
[N

Disclaimer of Warranties & Limitation of Liability

Page 3 of 11 www.4dsystems.com.au

APPLICATION NOTES

4D-AN-00196

Application Overview

The application note Designer or ViSi Strings and Character Arrays explains

how 4DGL strings and character arrays are stored in and accessed from
memory. It also differentiates between word-aligned and byte-aligned
pointers. Furthermore, it introduces the use of the function str_Printf{(...).

The application note Designer or ViSi 4DGL Strings Print Formats —the String

and Character Format Specifiers shows how the string and character format
specifiers (“%s” and “%c”, respectively) are used. Also, it covers the topics
“Automatic Advancing of the Pointer” and “Dynamic Construction of the

Format Specifier”.

This application note now further explains the use of the str_Printf{...)
function together with the long signed decimal and long unsigned decimal
format specifiers.

Setup Procedure

For instructions on how to launch Workshop 4, how to open a Designer
project, and how to change the target display, kindly refer to the section
“Setup Procedure” of the application note

Designer Getting Started - First Project

For instructions on how to launch Workshop 4, how to open a ViSi project,
and how to change the target display, kindly refer to the section “Setup
Procedure” of the application note

ViSi Getting Started - First Project for Picaso and Diablo16

Create a New Project

For instructions on how to create a new Designer project, please refer to
the section “Create a New Project” of the application note
Designer Getting Started - First Project

For instructions on how to create a new ViSi project, please refer to the
section “Create a New Project” of the application note
ViSi Getting Started - First Project for Picaso and Diablo16

Page 4 of 11

www.4dsystems.com.au

http://www.4dsystems.com.au/appnote/4D-AN-00193/
http://www.4dsystems.com.au/appnote/4D-AN-00194/
http://www.4dsystems.com.au/appnote/4D-AN-00194/
http://www.4dsystems.com.au/appnote/4D-AN-00117/
http://www.4dsystems.com.au/appnote/4D-AN-00119/
http://www.4dsystems.com.au/appnote/4D-AN-00117/
http://www.4dsystems.com.au/appnote/4D-AN-00119/

APPLICATION NOTES

4D-AN-00196

Design the Project

The Format Specifier “%ld”

The format specifier “%ld” is used for displaying long signed decimal
numbers. A long signed decimal in 4DGL is a signed 32-bit (or 4-byte) integer
value, the range of which is from -2,147,483,648 to 2,147,483,647 (-2°* to
231.1). Consider the code snippet shown below.

r

print ("ptr old: ",ptr,"\n"

1

print ("val3Z:) ;
str Printf (eptr, "%1d4d"):

int ("\n") ;

The function umul_1616(...) performs an unsigned multiplication of two 16-
bit values, placing the 32-bit result in a two-word array. In this example, the
two 16-bit values are 500 and 2000. When multiplied together the product
of these is 1000000. If we print the contents of the word array val32 in
hexadecimal format,

: 4248
: BBAF

Page 5 of 11 www.4dsystems.com.au

APPLICATION NOTES

4D-AN-00196

We analyse the contents of the word array val32.

element val32[0] val32[1]
byte high | low | high | low
address ‘ 17 16 ’ 19 18
Hex | 42 40 | 00 OF
\ J \
| |
Low word High word

—> | O0x000F 4240 = 1000000 <

Note also that the pointer was advanced by four bytes after the long signed
decimal value was printed.

val32[0]

val32[1]
byte high | low | high low | high low

Hex | 42

40 | 00 OF | - | -
address | 17

16 | 19 18 | 21 | 20

! !

Therefore, the long signed decimal format specifier, “%ld”, causes the
str_Printf(...) function to get four bytes from the address starting at that
pointed to by the byte-aligned pointer. str_Printf{(...) then treats these four
bytes as a 32-bit signed integer and prints the decimal equivalent.

The 32-bit data found starting at address 16, in this example, is “Ox000F
4240", the decimal equivalent of which is “1000000”.

The Width and Zero Flag Sub-specifiers

The Width Sub-specifier

Consider the output below.

al3Z: 188H8HA
al3Z: 188688688

The code for the first line is

Page 6 of 11

www.4dsystems.com.au

APPLICATION NOTES

4D-AN-00196

str_ Printf (sptr, "%1d4d");

The code for the second line is

print ("\n");

ptr := str Ptr(wal32);
~int ("wal ")

str Printf (eptr, "%101d4");

Note that in the second line, the number has three spaces preceding it. This
is because the width specifier was used in the str_Printf{(...) function.

str Printf (eptr, "%101d");

Here the width specifier value is 10, so the field width of the printed figure
is ten digits, and since the number is only seven digits, it is preceded by three
space characters.

The Zero Flag Sub-specifier
Suppose we want the number to be preceded with zeros rather than spaces,

we would write,

Here the width sub-specifier is preceded by the zero flag sub-specifier,
which would cause the number to be left-padded with zeros instead of
spaces. To illustrate,

aldZ: 188888A
al3z: 1888888
al3Z: ARA1AAAAAA

Therefore, without the zero flag sub-specifier, the default character with
which a number, printed with a certain field width, is to be left-padded is

Page 7 of 11

www.4dsystems.com.au

APPLICATION NOTES

4D-AN-00196

the space character. The width and zero flag sub-specifiers can be used with
other format specifiers besides the long signed decimal format specifier.

The Designer project for the discussions on the long signed decimal format
specifier and the width and zero flag sub-speficiers is “stringsBasics6.4dg”
(attached).

Printing Negative Numbers

Print a Negative Long Decimal Number
To print a negative long decimal number, we first generate a negative 32-bit
integer by multiplying the two 16-bit integers shown below.

print ("ptr old: ",ptr,"\n");

Again, the function umul_1616(...) performs an unsigned multiplication of
two 16-bit values placing the 32-bit result in a two-word array. In this
example, the two 16-bit values are OxFF12 and OxFF34. When treated as
unsigned numbers and multiplied together, the product of these is OXFE46
BDAS8. If we print the contents of the word array val32 in hexadecimal
format,

("wval3Z[0]: ", [HEX]w:

("\n

("val32[1]1: ™, [HEX]wW:

"y oL
.If

we get,

21320681 : BDAS
al3ZC[1]1: FE46

Using the long signed decimal format specifier, “%ld”, would cause
str_Printf{(...) to treat the two-word data as a signed 32-bit integer. Hence,
we get the decimal equivalent value of “-28918360” for “OxFE46 BDAS8".

Page 8 of 11

www.4dsystems.com.au

APPLICATION NOTES

4D-AN-00196

print ("ptr old: ",ptr,"\n");

print ("val32: ");
str Printf (eptr, "%1d4");
orint (A"y ;

",ptr);

al3dz: —2891836H

Print a Long Unsigned Decimal Number

To make str_Printf(...) treat the data inside val32[0] and val32[1] as an
unsigned 32-bit integer, we use the long unsigned decimal format specifier
Il%IuH.

Hence we get the equivalent decimal value “4266048936".

» al3Z: 4266848936

Dynamic Construction of the Format Specifier

As was shown in the application note Designer or ViSi 4DGL Strings Print

Formats — the String and Character Format Specifiers, the format specifier

argument of the str_Printf{(...) function can also be a word-aligned string
pointer, allowing dynamic construction of the printing format. We will now
use dynamically constructed format specifiers, together with the width and
zero flag sub-specifiers, to come up with the formatted display output
shown below.

aldZ: —A8Z8913368
al3Z : H4266848936

Page 9 of 11 www.4dsystems.com.au

http://www.4dsystems.com.au/appnote/4D-AN-00194/
http://www.4dsystems.com.au/appnote/4D-AN-00194/

APPLICATION NOTES

4D-AN-00196

The code snippet for the above output is:

ormat) ;
1= str Ptr(va
str_ Printf (sptr,

ormat) ; print
ptr := str Ptr(w

str Printf (sptr,

The Designer project for the remaining part of this application note is
“stringsBasics7b.4dg” (attached). Although the examples are simple, the
ability to construct a format specifier dynamically can be a powerful tool.

Run the Program

For instructions on how to save a Designer project, how to connect the
target display to the PC, how to select the program destination, and how to
compile and download a program, please refer to the section “Run the
Program” of the application note

Designer Getting Started - First Project

For instructions on how to save a ViSi project, how to connect the target
display to the PC, how to select the program destination, and how to
compile and download a program, please refer to the section “Run the
Program” of the application note

ViSi Getting Started - First Project for Picaso and Diablo16

The uLCD-32PTU and uLCD-35DT display modules are commonly used as
examples, but the procedure is the same for other displays.

Page 10 of 11

www.4dsystems.com.au

http://www.4dsystems.com.au/appnote/4D-AN-00117/
http://www.4dsystems.com.au/appnote/4D-AN-00119/

APPLICATION NOTES 4D-AN-00196

Proprietary Information

The information contained in this document is the property of 4D Systems Pty. Ltd. and may be the subject of patents pending or granted, and must not be

copied or disclosed without prior written permission.

4D Systems endeavours to ensure that the information in this document is correct and fairly stated but does not accept liability for any error or omission. The
development of 4D Systems products and services is continuous and published information may not be up to date. It is important to check the current position
with 4D Systems.

All trademarks belong to their respective owners and are recognised and acknowledged.

Disclaimer of Warranties & Limitation of Liability

4D Systems makes no warranty, either expresses or implied with respect to any product, and specifically disclaims all other warranties, including, without
limitation, warranties for merchantability, non-infringement and fitness for any particular purpose.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates.
It is your responsibility to ensure that your application meets with your specifications.

In no event shall 4D Systems be liable to the buyer or to any third party for any indirect, incidental, special, consequential, punitive or exemplary damages
(including without limitation lost profits, lost savings, or loss of business opportunity) arising out of or relating to any product or service provided or to be
provided by 4D Systems, or the use or inability to use the same, even if 4D Systems has been advised of the possibility of such damages.

4D Systems products are not fault tolerant nor designed, manufactured or intended for use or resale as on line control equipment in hazardous environments
requiring fail — safe performance, such as in the operation of nuclear facilities, aircraft navigation or communication systems, air traffic control, direct life
support machines or weapons systems in which the failure of the product could lead directly to death, personal injury or severe physical or environmental
damage (‘High Risk Activities’). 4D Systems and its suppliers specifically disclaim any expressed or implied warranty of fitness for High Risk Activities.

Use of 4D Systems’ products and devices in 'High Risk Activities' and in any other application is entirely at the buyer’s risk, and the buyer agrees to defend,
indemnify and hold harmless 4D Systems from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or
otherwise, under any 4D Systems intellectual property rights.

Page 11 of 11 www.4dsystems.com.au

