
`

ViSi-Genie Arduino:

Switching Banks

A
P

P
L

IC
A

T
IO

N
 N

O
T

E
S

DOCUMENT DATE: 9th MAY 2020

DOCUMENT REVISION: 1.0

W W W . 4 D S Y S T E M S . C O M . A U

APPLICATION NOTES 4D-AN-00263

Page 2 of 13 www.4dsystems.com.au

Description

This application note shows how to switch between banks of the Diablo16

processor using an Arduino host.

Before getting started, the following are required:

Hardware

- Any 4D Systems display module powered by the Diablo16 processor

- Programming Adaptor for target display module

- uSD Card

- USB Card Reader

- An Arduino board with at least two UART ports (one of the ports will

be used for debugging)

Software

- Workshop4

- This requires the PRO version of Workshop4

This application note comes with two (2) ViSi-Genie projects.

Note: Using a non-4D programming interface could damage the processor
and void the warranty.

Content

Description .. 2

Content ... 2

Application Overview ... 3

Setup Procedure .. 4

Create a New Project ... 4

Design the Project .. 4

Open the Project Files .. 4

First Project Objects ... 5

Second Project Objects .. 7

Upload the ViSi-Genie Programs .. 7

Design the Arduino Sketch ... 8

Open the Arduino Sketch ... 8

Install the ViSi-Genie-Arduino-Library-BETA Library 8

Code Discussion ... 8

Bank-Specific Constants and Variables 8

Variables for knowing which Bank is Active 9

Writing to Bank-Specific Objects 9

Switching Banks 10

Recovering from a Disconnection 10

Recovering from a Bank Switch 11

https://4dsystems.com.au/products/4d-intelligent-hmi-display-modules/gen4-hmi-display-modules
https://4dsystems.com.au/products/accessories
https://4dsystems.com.au/products/accessories
https://4dsystems.com.au/workshop4

APPLICATION NOTES 4D-AN-00263

Page 3 of 13 www.4dsystems.com.au

Restoring States of Objects 11

Set up the Host and the Display Module 12

Proprietary Information ... 13

Disclaimer of Warranties & Limitation of Liability 13

Application Overview

The Diablo16 processor has six flash banks (Bank 0 to Bank 5), each of which

has a capacity of 32 kB. As of Workshop4 version 4.5.0.8, it is now possible

for the user to specify the destination flash bank of a ViSi-Genie program.

This was not possible in previous versions of Worskhop4. Prior to version

4.5.0.8, bank 0 was the only possible flash memory destination of a ViSi-

Genie program.

The purpose of this application note is to show how to switch between

banks using an Arduino as a host controller. This application note uses the

ViSi-Genie environment, together with Genie-Magic. Thus, the PRO version

of Workshop4 is required.

For more information on the basics of the multiple flash bank feature in ViSi-

Genie, refer to the application note ViSi-Genie Flash Banks.

APPLICATION NOTES 4D-AN-00263

Page 4 of 13 www.4dsystems.com.au

Setup Procedure

For instructions on how to launch Workshop4, how to open a ViSi-Genie

project, and how to change the target display, kindly refer to the section

“Setup Procedure” of the application note

• ViSi-Genie Getting Started - First Project for Diablo16 Display Modules

Create a New Project

For instructions on how to create a new ViSi-Genie project, please refer to

the section “Create a New Project” of the application note

• ViSi-Genie Getting Started - First Project for Diablo16 Display Modules

Design the Project

For this application note, a gen4-uLCD-35DCT-CLB will be used for the

project. The same procedure is applicable for any Diablo16 displays. Also,

this application note comes with zip files which contain demo projects

needed for the discussions.

Open the Project Files
Open the project files inside the zip files “first.zip” and “second.zip”.

Note that the projects contain magic objects, so Workshop4 PRO is needed

to open them. The project “first” should contain the objects shown below.

The target bank for project “first” is bank 0.

https://4dsystems.com.au/blog/4d-an-00106/
https://4dsystems.com.au/blog/4d-an-00106/

APPLICATION NOTES 4D-AN-00263

Page 5 of 13 www.4dsystems.com.au

Note that these objects does not occupy the whole screen area. This is in

consideration of easily testing the project with smaller displays. You may

resize the project if you desire.

The project “second”, on the other hand, is shown below. The target bank

for this project is bank 1.

3

Again, please note that these objects does not occupy the whole screen area

in consideration of easily testing the project with smaller displays. You may

resize the project if you desire.

Both of these projects will communicate with the host at 200000 baud.

First Project Objects

The first project contains the following objects:

The input objects present in the project are Winbutton0 and Slider0.

Winbutton0 sends a REPORT_EVENT message to the host controller

indicating that the user wants to switch to the second bank.

Note: It is important for applications which utilize multiple flash banks

with different ViSi Genie projects that the host controller knows what flash

bank the display is currently at.

If Winbutton0’s REPORT_EVENT message is successfully received, the host

will reply by issuing a WRITE_OBJ message to MagicObject0. MagicObject0

will then run the appropriate flash bank stated in the host’s WRITE_OBJ

message if valid. Otherwise, the display will reset.

APPLICATION NOTES 4D-AN-00263

Page 6 of 13 www.4dsystems.com.au

func rMagicObject0(var action, var object, var newVal, var *ptr)

 var returnFB := 0;

 if(action == WRITE_OBJ)

 seroutX(ACK);

 pause(5);

 returnFB := flash_Run(newVal);

 if(returnFB)

 gfx_MoveTo(0,0);

 if(returnFB == -1)

 print("invalid bank number");

 else if(returnFB == -2)

 print("no valid program in the selected bank");

 else

 print("run bank not successful, unknown error");

 endif

 print("\nrestarting...");

 pause(2000);

 SystemReset();

 endif

 else if(action == READ_OBJ)

 SendReport(REPORT_OBJ, tMagicObject, 0,flash_Bank()) ;

 // let the host know the current bank

 endif

endfunc

As seen in the code above, MagicObject0 can also receive a READ_OBJ

message, and it will send a REPORT_OBJ message stating the current flash

bank that is running.

else if(action == READ_OBJ)

 SendReport(REPORT_OBJ, tMagicObject, 0,flash_Bank()) ;

 // let the host know the current bank

The object MagicCode0 contains the line below.

SendReport(REPORT_EVENT, tMagicObject, 0, flash_Bank()) ;

MagicCode0 is inserted to the Post Genie Initialize section of the ViSi-Genie

program. This sends a REPORT_EVENT message to the host that the display

is ready and what bank it is currently running.

Slider0 simply sends a REPORT_EVENT message to the host. Once the host

receives this message, it will update Leddigits0 accordingly.

The other remaining objects act as outputs that will be controlled by the

host.

APPLICATION NOTES 4D-AN-00263

Page 7 of 13 www.4dsystems.com.au

Second Project Objects

The second project contains the following objects:

It can be noticed that this project is very similar to the previous one.

SmartSlider0 and SmartGauge0 simply replaced Slider0 and Coolgauge0 of

the previous project, respectively.

SmartSlider0 in the second project and Slider0 in the first project have the

same function. The same applies to SmartGauge0 and Coolgauge0.

Winbutton0’s function is identical to that of Winbutton0 in the first project.

MagicCode0 and MagicObject0 are also present and have the same

functions as described in the previous section.

The other remaining objects, similar to the previous project, will act as

outputs that will be controlled by the host.

Upload the ViSi-Genie Programs
As discussed in the application note ViSi-Genie Flash Banks, there are two

ways to load a program to its target bank. The first one is to directly load the

program to the target flash bank. The second option is to copy the program

file to the uSD card which is directly mounted to the PC. The uSD card can

then be unmounted from the PC and mounted to the display module.

Another program is then needed to copy the program from the uSD card to

the destination flash bank. In this example, the first approach is used. It is

also possible to use the second approach. For more information, refer to the

application note linked above.

Compile the projects and upload the programs to their respective flash

banks. Also, the GCI and DAT files need to be copied to the uSD Card. The

first project should occupy Bank0 while the second project should occupy

Bank1. Again, it is also possible to utilize the other banks. For more

information, refer to the application note ViSi-Genie Flash Banks.

http://www.4dsystems.com.au/appnote/4DLS-AN-00041S/

APPLICATION NOTES 4D-AN-00263

Page 8 of 13 www.4dsystems.com.au

Design the Arduino Sketch

Open the Arduino Sketch

The sketch for this application note is switchBankDemo_R_x_yy.ino, where

“x_yy” is the revision number. Look for the sketch file in the attached zip

file.

Install the ViSi-Genie-Arduino-Library-BETA Library
The library used in the sketch is found here. For more information on how

to properly install libraries in the Arduino IDE, visit this link:

http://arduino.cc/en/Guide/Libraries

First-time users of the above library are encouraged to study the default

examples in the library. The following discussions assume that the reader

has a working knowledge of the Arduino platform and has an understanding

of the examples in the library.

Code Discussion

Bank-Specific Constants and Variables

As emphasized in the application note ViSi-Genie Switching Banks, it is

important for the host to be aware which bank is currently running on the

display module. This is so that the host writes only to the objects that exist

on the program that is currently running. In the source code of the host’s

program therefore, it is useful to organize bank-specific variables. For this

example, the struct bank is defined as follows.

struct bank {

 uint8_t gauge;

 uint16_t gaugeVal;

 int8_t gaugeDir;

 uint8_t input;

 uint16_t inputVal;

};

The variables Project1 and Project2, each of the data type bank, are then

declared.

bank Project1;

bank Project2;

In setup(), the variables exclusive to each ViSi-Genie project are assigned as

members of bank Project1 and Project2, accordingly.

setBank(&Project1,GENIE_OBJ_COOL_GAUGE,0,1,GENIE_OBJ_SLIDER,0);

setBank(&Project2,GENIE_OBJ_ISMARTGAUGE,0,1,GENIE_OBJ_ISMARTSLIDER

,0);

The function setBank() is defined before the setup routine.

void setBank(bank* _bank, uint8_t gauge, uint16_t gaugeVal, int8_t

gaugeDir, uint8_t input, uint16_t inputVal) {

 _bank->gauge = gauge;

 _bank->gaugeVal = gaugeVal;

 _bank->gaugeDir = gaugeDir;

 _bank->input = input;

 _bank->inputVal = inputVal;

}

https://github.com/4dsystems/ViSi-Genie-Arduino-Library-BETA
http://arduino.cc/en/Guide/Libraries

APPLICATION NOTES 4D-AN-00263

Page 9 of 13 www.4dsystems.com.au

Variables for knowing which Bank is Active

For monitoring the current bank, a global bank pointer and a global signed

8-bit integer are declared and initialized to invalid values.

bank* currentProject = NULL;

int8_t currentBank = -1;

After receiving either a REPORT_EVENT or REPORT_OBJ message from the

display module, the host will be able to assign the proper values for

currentProject and currentBank. To illustrate, refer to the code blocks shown

below. These blocks are inside the myGenieEventHandler() routine.

if (Event.reportObject.cmd == GENIE_REPORT_EVENT) {

...

 else if (Event.reportObject.object == GENIE_OBJ_MAGIC) {

 if (Event.reportObject.index == 0) {

 Serial.println("Received REPORT_EVENT message from

MagicObject0");

 receivedReportEventFlag = true;

 // Received when the program is ready (Post Genie Init)

 currentBank = genie.GetEventData(&Event);

 currentProject = (currentBank == PROJECT1) ? &Project1 :

&Project2;

}}}

else if (Event.reportObject.cmd == GENIE_REPORT_OBJ) {

 if (Event.reportObject.object == GENIE_OBJ_MAGIC) {

 if (Event.reportObject.index == 0) {

 Serial.println("Received REPORT_OBJ message from

MagicObject0");

 receivedReportObjFlag = true;

 // Received as a reply to a READ_OBJ request, when the program

is not ready

 currentBank = genie.GetEventData(&Event);

 currentProject = (currentBank == PROJECT1) ? &Project1 :

&Project2;

}}}

Writing to Bank-Specific Objects

In the main loop it is shown how the host writes to the gauge object of the

current bank.

if (currentBank != -1) {

 currentProject->gaugeVal += currentProject->gaugeDir;

 if (currentProject->gaugeVal == 99 || !currentProject->gaugeVal)

currentProject->gaugeDir *= -1;

 genie.WriteObject(currentProject->gauge,0,currentProject-

>gaugeVal);

 genie.WriteObject(GENIE_OBJ_USER_LED,0,currentProject->gaugeVal

% 2);

}

Note that the host writes to the display module only if the value of

currentBank is valid.

if (currentBank != -1) {

 currentProject->gaugeVal += currentProject->gaugeDir;

 if (currentProject->gaugeVal == 99 || !currentProject->gaugeVal)

currentProject->gaugeDir *= -1;

 genie.WriteObject(currentProject->gauge,0,currentProject-

>gaugeVal);

 genie.WriteObject(GENIE_OBJ_USER_LED,0,currentProject->gaugeVal

% 2);

}

Otherwise, the host sends a READ_OBJ message to the display module to

poll the number of the bank that is currently running.

else {

 genie.ReadObject(GENIE_OBJ_MAGIC, 0);

 Serial.println("polling bank of the display now!");

}

The display module replies to the READ_OBJ message with a REPORT_OBJ

message, which will be handled by the function myGenieEventHandler(), as

shown earlier.

APPLICATION NOTES 4D-AN-00263

Page 10 of 13 www.4dsystems.com.au

Switching Banks

When Winbutton0 of either bank 0 or 1 is pressed, the display module sends

a REPORT_EVENT message to the host. This REPORT_EVENT message

originating from Winbutton0 is then processed in the function

myGenieEventHandler().

if (Event.reportObject.cmd == GENIE_REPORT_EVENT) {

...

 else if (Event.reportObject.object == GENIE_OBJ_WINBUTTON) {

 if (Event.reportObject.index == 0) {

 Serial.println("switching bank now");

 genie.WriteObject(GENIE_OBJ_MAGIC, 0, (currentBank ==

PROJECT1) ? PROJECT2 : PROJECT1);

 currentBank = -1;

 currentProject = NULL;

 switchBankFlag = true;

 }

 }

}

As can be seen in the code snippet, the REPORT_EVENT message from

Winbutton0 causes the host to send back a WRITE_OBJ message to the

display module, causing it to switch to the other bank. Also, the variables for

monitoring the currently active bank are equated to invalid values. This

means that the host must have to poll the display module again for the

number of the currently active bank in the next iteration of the main loop.

The host can also use the content of the REPORT_EVENT message coming

from the display every time it restarts.

Recovering from a Disconnection

The library used in this example has a facility for knowing if the display

module is disconnected from the host. A disconnection can be caused by

the display module being power cycled, by the UART lines being cut off, etc.

Every time that the display module is disconnected from the host, a

GENIE_DISCONNECTED event is raised and is processed by the function

myGenieEventHandler().

else if (Event.reportObject.cmd == GENIE_PING) {

 switch (Event.reportObject.object) {

 case GENIE_DISCONNECTED:

 digitalWrite(13, HIGH);

 currentBank = -1;

 Serial.println("\nDisplay disconnected!\n");

 break;

...

 default:

 break;

 }

}

As can be seen in the code snippet above, the variable currentBank is

assigned an invalid value when a disconnection happens. Again, this causes

the host to query the display module for the number of the current bank in

the next iterations of the main loop, assuming that the display module is

connected back again to the host.

APPLICATION NOTES 4D-AN-00263

Page 11 of 13 www.4dsystems.com.au

Recovering from a Bank Switch

Note that when switching banks, the display actually resets and boots up.

During this reset-and-boot-up period, the display module is disconnected

from the host. Hence, a bank switch can be thought of as another cause of

a disconnection. To differentiate a bank switch from other causes of a

disconnection (such as the display module being inadvertently power cycled

or the UART lines being cut off), the variable switchBankFlag is used. When

sending a WRITE_OBJ message to the display module to cause it to switch

banks, the host also sets the value of the flag switchBankFlag to true.

if (Event.reportObject.cmd == GENIE_REPORT_EVENT) {

...

 else if (Event.reportObject.object == GENIE_OBJ_WINBUTTON) {

 if (Event.reportObject.index == 0) {

 Serial.println("switching bank now");

 genie.WriteObject(GENIE_OBJ_MAGIC, 0, (currentBank ==

PROJECT1) ? PROJECT2 : PROJECT1);

 currentBank = -1;

 currentProject = NULL;

 switchBankFlag = true;

 }

 }

}

Restoring States of Objects

After a bank switch or a disconnection, the display module might send a

REPORT_EVENT message containing the number of the active bank (if power

cycled). In the event that the REPORT_EVENT message is not sent or if the

host is not able to receive and process it, the host polls the display module

until it receives a REPORT_OBJ message containing the number of the active

bank. After the host is able to determine the number of the current bank, it

now restores the objects to their last known states accordingly. The

restoration process is performed by the function updateBankObjects(),

which is called from the main loop.

void loop() {

 static long waitPeriod = millis(); // timer to repeat task

 genie.DoEvents();

 if (millis() >= waitPeriod) {

 ...

 }

 updateBankObjects(); //update bank objects and states of bank

switch flags

}

The definition of this function is found at the end of the sketch. Note that

this function is able to differentiate between disconnections caused by a

bank switch from those caused by other cases.

APPLICATION NOTES 4D-AN-00263

Page 12 of 13 www.4dsystems.com.au

Set up the Host and the Display Module

Refer to the section “Connect the Display Module to the Arduino Host” of

the application note ViSi-Genie Connecting a 4D Display to an Arduino Host

for more information on how to connect a display module to an Arduino

host.

It is highly recommended to use an Arduino host with at least two hardware

UART ports during development. Serial0 can be used for debugging

purposes while Serial1 can be used for communicating with the display

module. Users can modify the attached sketch accordingly to remove the

debugging lines.

Note: The library used in this application note, at the time of writing, does

not support software serial.

http://www.4dsystems.com.au/appnote/4D-AN-00017/

APPLICATION NOTES 4D-AN-00263

Page 13 of 13 www.4dsystems.com.au

Proprietary Information

The information contained in this document is the property of 4D Systems Pty. Ltd. and may be the subject of patents pending or granted, and must not be

copied or disclosed without prior written permission.

4D Systems endeavours to ensure that the information in this document is correct and fairly stated but does not accept liability for any error or omission. The

development of 4D Systems products and services is continuous and published information may not be up to date. It is important to check the current position

with 4D Systems.

All trademarks belong to their respective owners and are recognised and acknowledged.

Disclaimer of Warranties & Limitation of Liability

4D Systems makes no warranty, either expresses or implied with respect to any product, and specifically disclaims all other warranties, including, without

limitation, warranties for merchantability, non-infringement and fitness for any particular purpose.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates.

It is your responsibility to ensure that your application meets with your specifications.

In no event shall 4D Systems be liable to the buyer or to any third party for any indirect, incidental, special, consequential, punitive or exemplary damages

(including without limitation lost profits, lost savings, or loss of business opportunity) arising out of or relating to any product or service provided or to be

provided by 4D Systems, or the use or inability to use the same, even if 4D Systems has been advised of the possibility of such damages.

4D Systems products are not fault tolerant nor designed, manufactured or intended for use or resale as on line control equipment in hazardous environments

requiring fail – safe performance, such as in the operation of nuclear facilities, aircraft navigation or communication systems, air traffic control, direct life

support machines or weapons systems in which the failure of the product could lead directly to death, personal injury or severe physical or environmental

damage (‘High Risk Activities’). 4D Systems and its suppliers specifically disclaim any expressed or implied warranty of fitness for High Risk Activities.

Use of 4D Systems’ products and devices in 'High Risk Activities' and in any other application is entirely at the buyer’s risk, and the buyer agrees to defend,

indemnify and hold harmless 4D Systems from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or

otherwise, under any 4D Systems intellectual property rights.

	Description
	Content
	Application Overview
	Setup Procedure
	Create a New Project
	Design the Project
	Open the Project Files
	First Project Objects
	Second Project Objects
	Upload the ViSi-Genie Programs

	Design the Arduino Sketch
	Open the Arduino Sketch
	Install the ViSi-Genie-Arduino-Library-BETA Library
	Code Discussion
	Bank-Specific Constants and Variables
	Variables for knowing which Bank is Active
	Writing to Bank-Specific Objects
	Switching Banks
	Recovering from a Disconnection
	Recovering from a Bank Switch
	Restoring States of Objects

	Set up the Host and the Display Module
	Proprietary Information
	Disclaimer of Warranties & Limitation of Liability

