@4 D SYSTEMS

ViSi-Genie Arduino:
Switching Banks

DOCUMENT DATE: 9t MAY 2020
DOCUMENT REVISION: 1.0

>
o
o
L
Q)
>
.
O
Z
Z
O
—)
u
7

WWW.4DSYSTEMS.COM. AU

APPLICATION NOTES 4D-AN-00263
Description Content
This application note shows how to switch between banks of the Diablo16 [0 T ol 1] 4 o] o PN 2
processor using an Arduino host. (00071 =T 41 2
Before getting started, the following are required: ApPPlication OVErVIEW......cccciiveiiieeiiiinicieniiiniciiniieseieneresssssens 3
Hardware SEtUP ProCeAUreccuveeireeeriecreeireeiereeteereeerenrenreaneensernsernsesensannes 4
- Any 4D Systems display module powered by the Diablo16 processor Create a NeW Projectciveeiiiieiiiiniiiiiniiieinienininenenensiesenssssensenens 4
- Programming Adaptor for target display module Design the Project........ccceeiiiiiiiiieneneniiiiniiininenniieensms. 4
- uSD Card ") .
. USB Card Reader Open the Project Files.............cuucveiieriveiveiieiiniinsinecresiasinssscssnnnns 4
- An Arduino board with at least two UART ports (one of the ports will First PijECt ObjECtS ... 5
be used for debugging) 5econd Project ODJECLSccueeeeeeeeeeeeeeieeeeeeeeeeeeeeeeeeeeesneeneeeeens 7
Upload the ViSi-Genie Programs................ceeeeeeereveeneeevenerennenee 7
Software
- Workshop4 Design the Arduino Sketch ..., 8
- This requires the PRO version of Workshop4 Open the Arduino SKetcheeeeeereeeceveereeereeerssessveeseennnns 8
Install the ViSi-Genie-Arduino-Library-BETA Library 8
This application note comes with two (2) ViSi-Genie projects.
(00 To =1 0ol VX [R 8
Note: Using a non-4D programming interface could damage the processor Bank-Specific Constants and Variables 8
and void the warranty. Variables for knowing which Bank is Active 9
Writing to Bank-Specific Objects 9
Switching Banks 10
Recovering from a Disconnection 10
Recovering from a Bank Switch 11

Page 2 of 13

www.4dsystems.com.au

https://4dsystems.com.au/products/4d-intelligent-hmi-display-modules/gen4-hmi-display-modules
https://4dsystems.com.au/products/accessories
https://4dsystems.com.au/products/accessories
https://4dsystems.com.au/workshop4

APPLICATION NOTES

4D-AN-00263

Restoring States of Objects 11
Set up the Host and the Display Module.........ccccccveeiiiinnniiiiinnnnnnnns 12
Proprietary Informationcccccoiireeiiiiinenniinininnininnennene. 13
Disclaimer of Warranties & Limitation of Liabilitycccccceenueeee. 13

Application Overview

The Diablo16 processor has six flash banks (Bank 0 to Bank 5), each of which
has a capacity of 32 kB. As of Workshop4 version 4.5.0.8, it is now possible
for the user to specify the destination flash bank of a ViSi-Genie program.
This was not possible in previous versions of Worskhop4. Prior to version
4.5.0.8, bank 0 was the only possible flash memory destination of a ViSi-
Genie program.

The purpose of this application note is to show how to switch between
banks using an Arduino as a host controller. This application note uses the
ViSi-Genie environment, together with Genie-Magic. Thus, the PRO version
of Workshop4 is required.

For more information on the basics of the multiple flash bank feature in ViSi-
Genie, refer to the application note ViSi-Genie Flash Banks.

Page 3 of 13

www.4dsystems.com.au

APPLICATION NOTES 4D-AN-00263

Setup Procedure Design the Project

For instructions on how to launch Workshop4, how to open a ViSi-Genie For this application note, a gen4-uLCD-35DCT-CLB will be used for the
project, and how to change the target display, kindly refer to the section project. The same procedure is applicable for any Diablo16 displays. Also,
“Setup Procedure” of the application note this application note comes with zip files which contain demo projects

needed for the discussions.
ViSi-Genie Getting Started - First Project for Diablo16 Display Modules

Open the Project Files
Open the project files inside the zip files “first.zip” and “second.zip”.

Create a New PI‘OJect Note that the projects contain magic objects, so Workshop4 PRO is needed

For instructions on how to create a new ViSi-Genie project, please refer to
the section “Create a New Project” of the application note

to open them. The project “first” should contain the objects shown below.
The target bank for project “first” is bank 0.

Welcome to the 1st Bank

|_| |_| Bank Mumber:

ViSi-Genie Getting Started - First Project for Diablo16 Display Modules

Page 4 of 13 www.4dsystems.com.au

https://4dsystems.com.au/blog/4d-an-00106/
https://4dsystems.com.au/blog/4d-an-00106/

APPLICATION NOTES

4D-AN-00263

Note that these objects does not occupy the whole screen area. This is in
consideration of easily testing the project with smaller displays. You may
resize the project if you desire.

The project “second”, on the other hand, is shown below. The target bank
for this project is bank 1.

Bank Mumber:

UserLED

]

Again, please note that these objects does not occupy the whole screen area
in consideration of easily testing the project with smaller displays. You may
resize the project if you desire.

Both of these projects will communicate with the host at 200000 baud.

First Project Objects

The first project contains the following objects:

Farmd W

; Cuulgauieﬂ I

Leddigitsd |
Leddigits1
MagicCoded
MagicObjectd
Slidern
Statictext0
Statictextl
Statictext2
Strings0

{Userledd
Winbuttond

The input objects present in the project are Winbutton0 and SliderO.

Winbutton0 sends a REPORT_EVENT message to the host controller
indicating that the user wants to switch to the second bank.

Note: It is important for applications which utilize multiple flash banks
with different ViSi Genie projects that the host controller knows what flash
bank the display is currently at.

If Winbutton0’s REPORT_EVENT message is successfully received, the host
will reply by issuing a WRITE_OBJ message to MagicObject0. MagicObject0
will then run the appropriate flash bank stated in the host’s WRITE_OB)J
message if valid. Otherwise, the display will reset.

Page 5 of 13

www.4dsystems.com.au

APPLICATION NOTES

4D-AN-00263

func rMagicObjectO (var action, var object, var newVal, var *ptr)

var returnfFB := 0;
if (action == WRITE OBJ)
seroutX (ACK) ;
pause (5) ;
returnFB := flash Run(newVal);

if (returnFB)
gfx MoveTo (0,0) ;

if (returnFB == -1)

print ("invalid bank number") ;
else if (returnFB == -2)

print ("no valid program in the selected bank");
else

print ("run bank not successful, unknown error");
endif
print ("\nrestarting...");

pause (2000) ;
SystemReset () ;
endif
else if (action == READ OBJ)
SendReport (REPORT OBJ, tMagicObject, 0,flash Bank()) ;
// let the host know the current bank
endif
endfunc

The object MagicCodeO contains the line below.

SendReport (REPORT EVENT, tMagicObject, 0, flash Bank()) ;

As seen in the code above, MagicObjectO can also receive a READ_OB)J
message, and it will send a REPORT_OBJ message stating the current flash
bank that is running.

else if (action == READ OBJ)
SendReport (REPORT OBJ, tMagicObject, 0,flash Bank()) ;
// let the host know the current bank

MagicCodeO is inserted to the Post Genie Initialize section of the ViSi-Genie
program. This sends a REPORT_EVENT message to the host that the display
is ready and what bank it is currently running.

SliderQ simply sends a REPORT_EVENT message to the host. Once the host
receives this message, it will update LeddigitsO accordingly.

The other remaining objects act as outputs that will be controlled by the
host.

Page 6 of 13

www.4dsystems.com.au

APPLICATION NOTES

4D-AN-00263

Second Project Objects

The second project contains the following objects:

Farm W

Leddigits0
Leddigits1
MagicCodel
MagicObjectd
SmartGaugel
Smar tSlider(
Statictext0
Statictextl
Statictext?
Strings0
UserledD
Winbuttond

It can be noticed that this project is very similar to the previous one.
SmartSlider0 and SmartGaugeO simply replaced Slider0 and Coolgauge0O of
the previous project, respectively.

SmartSlider0 in the second project and Slider0 in the first project have the
same function. The same applies to SmartGauge0 and CoolgaugeO.

WinbuttonQ'’s function is identical to that of WinbuttonO in the first project.

MagicCode0 and MagicObject0 are also present and have the same
functions as described in the previous section.

The other remaining objects, similar to the previous project, will act as
outputs that will be controlled by the host.

Upload the ViSi-Genie Programs
As discussed in the application note ViSi-Genie Flash Banks, there are two

ways to load a program to its target bank. The first one is to directly load the
program to the target flash bank. The second option is to copy the program
file to the uSD card which is directly mounted to the PC. The uSD card can
then be unmounted from the PC and mounted to the display module.
Another program is then needed to copy the program from the uSD card to
the destination flash bank. In this example, the first approach is used. It is
also possible to use the second approach. For more information, refer to the
application note linked above.

Compile the projects and upload the programs to their respective flash
banks. Also, the GCI and DAT files need to be copied to the uSD Card. The
first project should occupy BankO while the second project should occupy
Bankl. Again, it is also possible to utilize the other banks. For more
information, refer to the application note ViSi-Genie Flash Banks.

Page 7 of 13

www.4dsystems.com.au

http://www.4dsystems.com.au/appnote/4DLS-AN-00041S/

APPLICATION NOTES

4D-AN-00263

Design the Arduino Sketch

Open the Arduino Sketch

The sketch for this application note is switchBankDemo_R_x_yy.ino, where
“x_yy” is the revision number. Look for the sketch file in the attached zip
file.

Install the ViSi-Genie-Arduino-Library-BETA Library
The library used in the sketch is found here. For more information on how
to properly install libraries in the Arduino IDE, visit this link:

http://arduino.cc/en/Guide/Libraries

First-time users of the above library are encouraged to study the default
examples in the library. The following discussions assume that the reader
has a working knowledge of the Arduino platform and has an understanding
of the examples in the library.

Code Discussion

Bank-Specific Constants and Variables

As emphasized in the application note ViSi-Genie Switching Banks, it is
important for the host to be aware which bank is currently running on the
display module. This is so that the host writes only to the objects that exist
on the program that is currently running. In the source code of the host’s

program therefore, it is useful to organize bank-specific variables. For this
example, the struct bank is defined as follows.

struct bank {
uint8 t gauge;
uintl6 t gaugeVal;
int8 t gaugeDir;
uint8 t input;
uintl6 t inputvVal;
bi

The variables Projectl and Project2, each of the data type bank, are then
declared.

bank Projectl;
bank Project?2;

In setup(), the variables exclusive to each ViSi-Genie project are assigned as
members of bank Project1 and Project2, accordingly.

setBank (&Projectl, GENIE OBJ COOL GAUGE,0,1,GENIE OBJ SLIDER,O) ;

setBank (&Project2, GENIE OBJ ISMARTGAUGE, 0,1, GENIE OBJ ISMARTSLIDER
0);

’ 14

The function setBank() is defined before the setup routine.

void setBank (bank* bank, uint8 t gauge, uintl6 t gaugeVal, int8 t
gaugeDir, uint8 t input, uintlé t inputVal) ({

_bank->gauge = gauge;
_bank->gaugeVal = gaugeVal;
_bank->gaugeDir = gaugeDir;
_bank->input = input;
_bank->inputval = inputVval;

}

Page 8 of 13

www.4dsystems.com.au

https://github.com/4dsystems/ViSi-Genie-Arduino-Library-BETA
http://arduino.cc/en/Guide/Libraries

APPLICATION NOTES

4D-AN-00263

Variables for knowing which Bank is Active

For monitoring the current bank, a global bank pointer and a global signed

8-bit integer are declared and initialized to invalid values.

Writing to Bank-Specific Objects

In the main loop it is shown how the host writes to the gauge object of the
current bank.

NULL;
-1;

bank* currentProject
int8 t currentBank

After receiving either a REPORT_EVENT or REPORT_OBJ message from the
display module, the host will be able to assign the proper values for
currentProject and currentBank. To illustrate, refer to the code blocks shown
below. These blocks are inside the myGenieEventHandler() routine.

if (currentBank != -1) {

currentProject->gaugeVal += currentProject->gaugeDir;

if (currentProject->gaugeVal == 99 || !currentProject->gaugeVal)
currentProject->gaugeDir *= -1;

genie.WriteObject (currentProject->gauge,0,currentProject-
>gaugeVal) ;
genie.WriteObject (GENIE OBJ USER LED, 0,currentProject->gaugeVal
% 2);
}

if (Event.reportObject.cmd == GENIE REPORT EVENT) {
else if (Event.reportObject.object == GENIE OBJ MAGIC) {
if (Event.reportObject.index == 0) {
Serial.println ("Received REPORT EVENT message from
MagicObject0") ;

receivedReportEventFlag = true;
// Received when the program is ready (Post Genie Init)
currentBank = genie.GetEventData (&Event) ;

Note that the host writes to the display module only if the value of
currentBank is valid.

if (currentBank != -1) {

currentProject->gaugeVal += currentProject->gaugeDir;

if (currentProject->gaugeVal == 99 || !currentProject->gaugeVal)
currentProject->gaugeDir *= -1;

genie.WriteObject (currentProject->gauge, 0, currentProject-
>gaugeVal) ;
genie.WriteObject (GENIE OBJ USER LED, 0,currentProject->gaugeVal
% 2);
}

currentProject = (currentBank == PROJECT1l) ? &Projectl
&Project2;
}r}
else if (Event.reportObject.cmd == GENIE REPORT OBJ) {
if (Event.reportObject.object == GENIE OBJ MAGIC) ({
if (Event.reportObject.index == 0) {
Serial.println ("Received REPORT OBJ message from

MagicObjectO") ;

receivedReportObjFlag = true;

// Received as a reply to a READ OBJ request, when the program
is not ready

currentBank = genie.GetEventData (&Event) ;

currentProject = (currentBank == PROJECTl1l) ? &Projectl
&Project2;
b}

Otherwise, the host sends a READ_OBJ message to the display module to
poll the number of the bank that is currently running.

else {
genie.ReadObject (GENIE OBJ MAGIC, 0);
Serial.println("polling bank of the display now!");
}

The display module replies to the READ_OBJ message with a REPORT_OB)J
message, which will be handled by the function myGenieEventHandler(), as
shown earlier.

Page 9 of 13 www.4dsystems.com.au

APPLICATION NOTES

4D-AN-00263

Switching Banks

When WinbuttonO of either bank 0 or 1 is pressed, the display module sends
a REPORT_EVENT message to the host. This REPORT_EVENT message
originating from Winbutton0 is then processed in the function
myGenieEventHandler().

if (Event.reportObject.cmd == GENIE REPORT EVENT) {

else if (Event.reportObject.object == GENIE OBJ WINBUTTON) {
if (Event.reportObject.index == 0) {
Serial.println ("switching bank now") ;
genie.WriteObject (GENIE_OBJ MAGIC, 0,
PROJECT1) ? PROJECT2 : PROJECT1) ;
currentBank = -1;
currentProject
switchBankFlag
}
}
}

(currentBank ==

NULL;
true;

Recovering from a Disconnection

The library used in this example has a facility for knowing if the display
module is disconnected from the host. A disconnection can be caused by
the display module being power cycled, by the UART lines being cut off, etc.
Every time that the display module is disconnected from the host, a
GENIE_DISCONNECTED event is raised and is processed by the function
myGenieEventHandler().

As can be seen in the code snippet, the REPORT_EVENT message from
WinbuttonO causes the host to send back a WRITE_OBJ message to the
display module, causing it to switch to the other bank. Also, the variables for
monitoring the currently active bank are equated to invalid values. This
means that the host must have to poll the display module again for the
number of the currently active bank in the next iteration of the main loop.
The host can also use the content of the REPORT_EVENT message coming
from the display every time it restarts.

else if (Event.reportObject.cmd == GENIE PING) ({
switch (Event.reportObject.object) {
case GENIE DISCONNECTED:
digitalWrite (13, HIGH) ;

currentBank = -1;
Serial.println("\nDisplay disconnected!\n") ;
break;
default:
break;

As can be seen in the code snippet above, the variable currentBank is
assigned an invalid value when a disconnection happens. Again, this causes
the host to query the display module for the number of the current bank in
the next iterations of the main loop, assuming that the display module is
connected back again to the host.

Page 10 of 13

www.4dsystems.com.au

APPLICATION NOTES

4D-AN-00263

Recovering from a Bank Switch

Note that when switching banks, the display actually resets and boots up.
During this reset-and-boot-up period, the display module is disconnected
from the host. Hence, a bank switch can be thought of as another cause of
a disconnection. To differentiate a bank switch from other causes of a
disconnection (such as the display module being inadvertently power cycled
or the UART lines being cut off), the variable switchBankFlag is used. When
sending a WRITE_OBJ message to the display module to cause it to switch
banks, the host also sets the value of the flag switchBankFlag to true.

if (Event.reportObject.cmd == GENIE REPORT EVENT) {

else if (Event.reportObject.object == GENIE OBJ WINBUTTON) {
if (Event.reportObject.index == 0) {
Serial.println ("switching bank now") ;
genie.WriteObject (GENIE OBJ MAGIC, 0,
PROJECT1) ? PROJECT2 : PROJECT1) ;
currentBank = -1;
currentProject =
switchBankFlag =
}
}
}

(currentBank ==

NULL;
true;

Restoring States of Objects

After a bank switch or a disconnection, the display module might send a
REPORT_EVENT message containing the number of the active bank (if power
cycled). In the event that the REPORT_EVENT message is not sent or if the
host is not able to receive and process it, the host polls the display module
until it receives a REPORT_OBJ message containing the number of the active
bank. After the host is able to determine the number of the current bank, it
now restores the objects to their last known states accordingly. The
restoration process is performed by the function updateBankObjects(),
which is called from the main loop.

void loop () {
static long waitPeriod = millis(); // timer to repeat task
genie.DoEvents () ;

if (millis() >= waitPeriod) {
}
updateBankObjects(); //update bank objects and states of bank

switch flags
}

The definition of this function is found at the end of the sketch. Note that
this function is able to differentiate between disconnections caused by a
bank switch from those caused by other cases.

Page 11 of 13

www.4dsystems.com.au

APPLICATION NOTES 4D-AN-00263

Set up the Host and the Display Module

Refer to the section “Connect the Display Module to the Arduino Host” of

the application note ViSi-Genie Connecting a 4D Display to an Arduino Host

for more information on how to connect a display module to an Arduino
host.

It is highly recommended to use an Arduino host with at least two hardware
UART ports during development. Serial0 can be used for debugging
purposes while Seriall can be used for communicating with the display
module. Users can modify the attached sketch accordingly to remove the
debugging lines.

Note: The library used in this application note, at the time of writing, does
not support software serial. :

Page 12 of 13 www.4dsystems.com.au

http://www.4dsystems.com.au/appnote/4D-AN-00017/

APPLICATION NOTES 4D-AN-00263

Proprietary Information

The information contained in this document is the property of 4D Systems Pty. Ltd. and may be the subject of patents pending or granted, and must not be

copied or disclosed without prior written permission.

4D Systems endeavours to ensure that the information in this document is correct and fairly stated but does not accept liability for any error or omission. The
development of 4D Systems products and services is continuous and published information may not be up to date. It is important to check the current position
with 4D Systems.

All trademarks belong to their respective owners and are recognised and acknowledged.

Disclaimer of Warranties & Limitation of Liability

4D Systems makes no warranty, either expresses or implied with respect to any product, and specifically disclaims all other warranties, including, without
limitation, warranties for merchantability, non-infringement and fitness for any particular purpose.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates.
It is your responsibility to ensure that your application meets with your specifications.

In no event shall 4D Systems be liable to the buyer or to any third party for any indirect, incidental, special, consequential, punitive or exemplary damages
(including without limitation lost profits, lost savings, or loss of business opportunity) arising out of or relating to any product or service provided or to be
provided by 4D Systems, or the use or inability to use the same, even if 4D Systems has been advised of the possibility of such damages.

4D Systems products are not fault tolerant nor designed, manufactured or intended for use or resale as on line control equipment in hazardous environments
requiring fail — safe performance, such as in the operation of nuclear facilities, aircraft navigation or communication systems, air traffic control, direct life
support machines or weapons systems in which the failure of the product could lead directly to death, personal injury or severe physical or environmental
damage (‘High Risk Activities’). 4D Systems and its suppliers specifically disclaim any expressed or implied warranty of fitness for High Risk Activities.

Use of 4D Systems’ products and devices in 'High Risk Activities' and in any other application is entirely at the buyer’s risk, and the buyer agrees to defend,
indemnify and hold harmless 4D Systems from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or
otherwise, under any 4D Systems intellectual property rights.

Page 13 of 13 www.4dsystems.com.au

	Description
	Content
	Application Overview
	Setup Procedure
	Create a New Project
	Design the Project
	Open the Project Files
	First Project Objects
	Second Project Objects
	Upload the ViSi-Genie Programs

	Design the Arduino Sketch
	Open the Arduino Sketch
	Install the ViSi-Genie-Arduino-Library-BETA Library
	Code Discussion
	Bank-Specific Constants and Variables
	Variables for knowing which Bank is Active
	Writing to Bank-Specific Objects
	Switching Banks
	Recovering from a Disconnection
	Recovering from a Bank Switch
	Restoring States of Objects

	Set up the Host and the Display Module
	Proprietary Information
	Disclaimer of Warranties & Limitation of Liability

