
`

Smart Widget:

Rotary Menu

A
P

P
L

IC
A

T
IO

N
 N

O
T

E
S

DOCUMENT DATE: 9th MAY 2020

DOCUMENT REVISION: 1.0

W W W . 4 D S Y S T E M S . C O M . A U

APPLICATION NOTES 4D-AN-00269

Page 2 of 17 www.4dsystems.com.au

Description

This application note shows how to create a rotary menu using a smart

gauge in combination with Genie-Magic on a Picaso, Diablo16, and Pixxi

touch screen display modules.

Before getting started, the following are required:

Hardware

- Any 4D Systems display module powered by any of the following

processors:

o Picaso

o Diablo16

o Pixxi24/44

- Programming Adaptor for target display module

- uSD Card

- USB Card Reader

Software

- Workshop4

- This requires the PRO version of Workshop4

This application note comes with one (1) ViSi-Genie project.

Note: Using a non-4D programming interface could damage the processor
and void the warranty.

Content

Description .. 2

Content ... 2

Application Overview ... 3

Setup Procedure .. 3

Create a New Project ... 3

Design the ViSi-Genie Projects.. 4

Add a Smart Gauge Object ... 5

Add a User Images Object .. 8

Add Form1, Form2, and Form3 ... 9

Add Magic Code Objects ... 12

Add a Magic Touch Object .. 14

Add a Magic Move Object ... 15

Add a Magic Release Object ... 16

Run the Program ...16

Proprietary Information ..17

Disclaimer of Warranties & Limitation of Liability17

https://4dsystems.com.au/products/4d-intelligent-hmi-display-modules/gen4-hmi-display-modules
https://4dsystems.com.au/products/accessories
https://4dsystems.com.au/products/accessories
https://4dsystems.com.au/workshop4

APPLICATION NOTES 4D-AN-00269

Page 3 of 17 www.4dsystems.com.au

Application Overview

The rotary menu discussed in this application note is a set of icons arranged

on quarter circle. Each icon is enlarged when in focus. The rotary menu

widget is implemented using a smart gauge and custom 4DGL code. Custom

4DGL code is added to the ViSi-Genie project in the form of Genie-Magic

objects. Also, a user images object is added as a selector.

It is assumed that the reader knows how to create smart widget objects and

how to use magic objects. Recommended relevant application notes are:

• Smart Widgets Circular Progress Bar

• ViSi-Genie How to Add Magic Objects

• ViSi-Genie Magic Code Insertion Points

Setup Procedure

For instructions on how to launch Workshop4, how to open a ViSi-Genie

project, and how to change the target display, kindly refer to the section

“Setup Procedure” of the application note

• ViSi-Genie Getting Started - First Project for Diablo16 Display Modules

• ViSi-Genie Getting Started - First Project for Picaso Displays

• ViSi-Genie Getting Started - First Project for Pixxi Display Modules

Create a New Project

For instructions on how to create a new ViSi-Genie project, please refer to

the section “Create a New Project” of the application note

• ViSi-Genie Getting Started - First Project for Diablo16 Display Modules

• ViSi-Genie Getting Started - First Project for Picaso Displays

• ViSi-Genie Getting Started - First Project for Pixxi Display Modules

https://4dsystems.com.au/blog/4d-an-00106/
https://4dsystems.com.au/blog/4d-an-00001/
https://4dsystems.com.au/blog/4d-an-00214/
https://4dsystems.com.au/blog/4d-an-00106/
https://4dsystems.com.au/blog/4d-an-00001/
https://4dsystems.com.au/blog/4d-an-00214/

APPLICATION NOTES 4D-AN-00269

Page 4 of 17 www.4dsystems.com.au

Design the ViSi-Genie Projects

In this application note, a gen4-uLCD-43DCT-CLB is used. A working project

is also attached for reference (RotaryMenuLite_R_X_Y.zip). The same

procedure is applicable to any Picaso and Diablo16 displays.

First, add a background image to Form0 by clicking on the ellipsis dots in the

object inspector as shown below.

The background image used in the attached project can be found inside the

folder indicated below.

The image + video converter window appears. Click OK.

APPLICATION NOTES 4D-AN-00269

Page 5 of 17 www.4dsystems.com.au

Set the value of Bgtype to “Image”.

The WYSIWYG area should now be updated.

Add a Smart Gauge Object

Add a smart gauge object to the ViSi-Genie project. Workshop4 will name

this as “SmartGauge0”. The smart gauge icon can be found under the

Gauges tab of the widgets pane.

Simply click on the icon to select it. Then place it on the WYSIWYG

area.

APPLICATION NOTES 4D-AN-00269

Page 6 of 17 www.4dsystems.com.au

As displayed on the above image, the widget appears empty when placed in

the WYSIWYG area.

Open the Smart Widgets Editor tool by clicking on of Config in the Object

Inspector Properties tab.

The tool requires that the project is already saved before the tool opens.

Therefore, since in this case, it hasn’t been saved yet, Workshop4 will

automatically prompt the user to save

Save the project to a desired location.

The tool will open after the project has been saved.

Click the Load button to load an exisiting smart gauge object.

APPLICATION NOTES 4D-AN-00269

Page 7 of 17 www.4dsystems.com.au

Select the file inside the folder indicated below then click Open.

The selected smart gauge object shall now appear in the WYSIWYG area of

the Smart Widgets Editor tool.

Click OK.

The smart gauge object should now appear on the WYSIWYG area. It can be

moved to another location as shown below.

APPLICATION NOTES 4D-AN-00269

Page 8 of 17 www.4dsystems.com.au

Add a User Images Object

Add a user images object to the project. Workshop4 will name this as

“Userimages0”. This will be used as a selector button to enable the user to

navigate to the corresponding form for the highlighted icon. The user images

icon is found under the System/Media tab.

To add images to the user images object, click on the ellipsis dots of the

object inspector as indicated below.

The image list editor appears. Click on the add button.

APPLICATION NOTES 4D-AN-00269

Page 9 of 17 www.4dsystems.com.au

Select the four image files as shown below then click open.

The image list editor appears again. Make sure that the images are indexed

in the order shown below, then click OK.

The WYSIWYG area should now be updated.

Add Form1, Form2, and Form3

When an icon is selected, the program navigates to another form which

corresponds to the selected icon. Thus, additional forms need to be added

to the project. To add a form, go to the System/Media tab and click on the

icon indicated in the image below.

APPLICATION NOTES 4D-AN-00269

Page 10 of 17 www.4dsystems.com.au

A new, empty form is now added to the project.

Add a static text object to the form. Static text objects can be used as labels.

Furthermore, for the user to be able to navigate back to Form0, a winbutton

object is added to the form.

APPLICATION NOTES 4D-AN-00269

Page 11 of 17 www.4dsystems.com.au

Properties of the winbutton object such as Color and Caption can be

changed thru the properties tab of the object inspector.

Finally, the OnChanged event handler of the button should be set to

“Form0Activate” so that it navigates to Form0 when pressed and then

released.

Repeat the above procedure to create Form2 and Form3. When done, the

project should now have a total of 4 forms – Form0, Form1, Form2, and

Form3.

APPLICATION NOTES 4D-AN-00269

Page 12 of 17 www.4dsystems.com.au

Add Magic Code Objects

Add two magic code objects to the project – these will be named as

“MagicCode0” and “MagicCode1” by Workshop4. The 4DGL functions

needed to implement the rotary menu functionality will reside in

MagicCode0. MagicCode1, on the other hand, stores the routines to enable

touch detection for the smart gauge and user images objects.

To add a magic code object, click on the icon indicated in the image below.

The magic code object should now appear in the Objects Inspector.

To open the source code for MagiCode0, click on the ellipsis dots as

indicated below.

As can be seen above, MagicCode0 has no code yet. Open the attached

project “RotaryMenuLite_R_X_Y” and copy the contents of its MagicCode0,

then paste it to MagicCode0 of the current project.

APPLICATION NOTES 4D-AN-00269

Page 13 of 17 www.4dsystems.com.au

Note that the insertion point for MagicCode0 is “Constant/Global/Data”.

Note further that MagicCode0 has one global variable and 4 functions,

which are described below.

Variable or Function
Name

Description

selectedMenuItem This variable holds the value of the
currently selected icon. This variable is
updated depending on the coordinates
of the touch point.

updateMenu() This function is used to display a frame
of SmartGauge0 and Userimages0.
selectedMenuItem is used as the index
of the frame.

evaluateMenuTouch() This function checks the x and y touch
coordinates when the touch status is
“pressed” and/or “moving”, updates the
value of selectedMenuItem and runs
updateMenu().

evaluateMenuRelease() This function checks the x and y touch
coordinates when the touch status is
“released”, updates the value of
selectedMenuItem and runs
updateMenu().

resetMenuForm() This functions resets the value of
selectedMenuItem to “0” (which means
nothing is currently selected) and runs
updateMenu().

Add another magic code object to the project - MagicCode1. Similar to what

was done for MagicCode0, copy the 4DGL code of MagicCode1 in the

attached project “RotaryMenuLite_R_X_Y”. MagicCode1 contains two lines

of code:

img_ClearAttributes(hndl, iSmartGauge0, I_TOUCH_DISABLE);

img_ClearAttributes(hndl, iUserimages0, I_TOUCH_DISABLE);

These lines simply enable touch detection for SmartGauge0 and

Userimages0. Note that these objects are normally non-touchable in ViSi-

Genie. However, with Genie-Magic, finer control of behavior of objects is

possible.

Note that the insertion point for MagicCode1 is “PostGenieInit”.

APPLICATION NOTES 4D-AN-00269

Page 14 of 17 www.4dsystems.com.au

Add a Magic Touch Object

To add a magic touch object, click on the magic touch icon under the Magic

tab, as indicated in the image below.

Note that there is only one magic touch object, called “MagicTouch” in the

project. To open the source code for MagicTouch, click on the ellipsis dots

as indicated below.

Workshop4 opens the code area and displays the code for “MagicTouch”. At

this point, the code is empty. Copy the code from MagicTouch of the

attached project “RotaryMenuLite_R_X_Y”.

As the name implies, the magic touch code is executed by the Genie

program every time that the status of touch is "pressed". The index

(ImageTouched) of the object on which a press has occurred is evaluated. If

the object being pressed is SmartGauge0, the function

evaluateMenuTouch() is executed. On the other hand, if the object being

pressed is Userimages0, the current value of selectedMenuItem is used to

navigate to another form. Shown below is the code for MagicTouch.

switch(ImageTouched)

 case iSmartGauge0: // If Rotary menu is touched

 evaluateMenuTouch(); // Evaluate

 ImageTouched := -1;

 break;

 case iUserimages0: // If Item Display is touched

 switch(selectedMenuItem)

 case -1:

 case 0:

 break;

 default:

 ActivateForm(selectedMenuItem); //Navigate to

corresponding form

 resetMenuForm();

 break;

 endswitch

 ImageTouched := -1;

 break;

endswitch

APPLICATION NOTES 4D-AN-00269

Page 15 of 17 www.4dsystems.com.au

Add a Magic Move Object

To add a magic move object, click on the magic move icon under the Magic

tab, as indicated in the image below.

Note that there is only one magic move object, called “MagicMove” in the

project. To open the source code for MagicMove, click on the ellipsis dots

as indicated below.

Workshop4 opens the code area and displays the code for MagicMove. At

this point, the code is empty. Copy the code from MagicMove of the

attached project “RotaryMenuLite_R_X_Y”.

As the name suggests, the magic move code is executed by the Genie

program every time that the status of touch is “moving”. The index

(ImageTouched) of the object on which a movement is detected is

evaluated. If the object on which a movement is occurring is SmartGauge0,

the function evaluateMenuTouch() is executed. Shown below is the code

for MagicMove.

switch(ImageTouched)

 case iSmartGauge0: // If touch is moving in menu

 evaluateMenuTouch(); // Evaluate

 ImageTouched := -1;

 break;

 case iUserimages0:

 ImageTouched := -1;

 break;

endswitch

APPLICATION NOTES 4D-AN-00269

Page 16 of 17 www.4dsystems.com.au

Add a Magic Release Object

To add a magic release object, click on the magic release icon under the

Magic tab, as indicated in the image below.

Note that there is only one magic release object, called “MagicRelease” in

the project. To open the source code for MagicRelease, click on the ellipsis

dots as indicated below.

Workshop4 opens the code area and displays the code for MagicRelease.

At this point, the code is empty. Copy the code from MagicRelease of the

attached project “RotaryMenuLite_R_X_Y”.

The magic release code is executed by the Genie program every time that

the status of touch is "released". The index (ImageTouched) of the object

on which a touch release has occurred is evaluated. If the object is

SmartGauge0, the function evaluateMenuRelease () is executed. Shown

below is the code for MagicRelease.

switch(ImageTouched)

 case iSmartGauge0: // If the menu is released,

 evaluateMenuRelease(); // Evaluate menu

 ImageTouched := -1;

 break;

 case iUserimages0:

 ImageTouched := -1;

 break;

endswitch

Run the Program

For instructions on how to save a ViSi-Genie project, how to connect the

target display to the PC, how to select the program destination, and how to

compile and download a program, please refer to the section “Run the

Program” of the application note

• ViSi-Genie Getting Started - First Project for Diablo16 Display Modules

• ViSi-Genie Getting Started - First Project for Picaso Displays

• ViSi-Genie Getting Started - First Project for Pixxi Display Modules

https://4dsystems.com.au/blog/4d-an-00106/
https://4dsystems.com.au/blog/4d-an-00001/
https://4dsystems.com.au/blog/4d-an-00214/

APPLICATION NOTES 4D-AN-00269

Page 17 of 17 www.4dsystems.com.au

Proprietary Information

The information contained in this document is the property of 4D Systems Pty. Ltd. and may be the subject of patents pending or granted, and must not be

copied or disclosed without prior written permission.

4D Systems endeavours to ensure that the information in this document is correct and fairly stated but does not accept liability for any error or omission. The

development of 4D Systems products and services is continuous and published information may not be up to date. It is important to check the current position

with 4D Systems.

All trademarks belong to their respective owners and are recognised and acknowledged.

Disclaimer of Warranties & Limitation of Liability

4D Systems makes no warranty, either expresses or implied with respect to any product, and specifically disclaims all other warranties, including, without

limitation, warranties for merchantability, non-infringement and fitness for any particular purpose.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates.

It is your responsibility to ensure that your application meets with your specifications.

In no event shall 4D Systems be liable to the buyer or to any third party for any indirect, incidental, special, consequential, punitive or exemplary damages

(including without limitation lost profits, lost savings, or loss of business opportunity) arising out of or relating to any product or service provided or to be

provided by 4D Systems, or the use or inability to use the same, even if 4D Systems has been advised of the possibility of such damages.

4D Systems products are not fault tolerant nor designed, manufactured or intended for use or resale as on line control equipment in hazardous environments

requiring fail – safe performance, such as in the operation of nuclear facilities, aircraft navigation or communication systems, air traffic control, direct life

support machines or weapons systems in which the failure of the product could lead directly to death, personal injury or severe physical or environmental

damage (‘High Risk Activities’). 4D Systems and its suppliers specifically disclaim any expressed or implied warranty of fitness for High Risk Activities.

Use of 4D Systems’ products and devices in 'High Risk Activities' and in any other application is entirely at the buyer’s risk, and the buyer agrees to defend,

indemnify and hold harmless 4D Systems from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or

otherwise, under any 4D Systems intellectual property rights.

	Description
	Content
	Application Overview
	Setup Procedure
	Create a New Project
	Design the ViSi-Genie Projects
	Add a Smart Gauge Object
	Add a User Images Object
	Add Form1, Form2, and Form3
	Add Magic Code Objects
	Add a Magic Touch Object
	Add a Magic Move Object
	Add a Magic Release Object

	Run the Program
	Proprietary Information
	Disclaimer of Warranties & Limitation of Liability

